Solveeit Logo

Question

Mathematics Question on types of differential equations

Let
x=[1 1 1]x = \begin{bmatrix} 1 \\\ 1 \\\ 1 \end{bmatrix} and A=[123 016 001]A = \begin{bmatrix} -1 & 2 & 3 \\\ 0 & 1 & 6 \\\ 0 & 0 & -1 \end{bmatrix}
For k ∈ N, if X’AkX = 33, then k is equal to ____ .

Answer

Given that,
A=[123 016 001]A = \begin{bmatrix} -1 & 2 & 3 \\\ 0 & 1 & 6 \\\ 0 & 0 & -1 \end{bmatrix}
A2=[106 010 001]A^2 = \begin{bmatrix} 1 & 0 & 6 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \end{bmatrix}
A4=[101 201 001]A^4 = \begin{bmatrix} 1 & 0 & 1 \\\ 2 & 0 & 1 \\\ 0 & 0 & 1 \end{bmatrix}
Ak=[103k 010 001]A^k = \begin{bmatrix} 1 & 0 & 3k \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \end{bmatrix}
So, X^′A^kX= \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$\begin{bmatrix} 1 & 0 & 3k \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \end{bmatrix}$$\begin{bmatrix} 1 \\\ 1 \\\ 1 \end{bmatrix}
XAkX=[3k+3]⇒X^′A^kX=[3k+3]
⇒ [3k + 3] = 33 (here it shall be [33] as matrix can’t be equal to a scalar)
i.e. [3k + 3] = 33
3k + 3 = [33] ⇒ k = 10
If k is odd and apply above process, we don’t get odd value of k
∴ k = 10
So, the answer is 10.