Question
Mathematics Question on types of differential equations
Let
x=1 1 1 and A=−1 0 021036−1
For k ∈ N, if X’AkX = 33, then k is equal to ____ .
Answer
Given that,
A=−1 0 021036−1
A2=1 0 0010601
A4=1 2 0000111
Ak=1 0 00103k01
So, X^′A^kX= \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$\begin{bmatrix} 1 & 0 & 3k \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \end{bmatrix}$$\begin{bmatrix} 1 \\\ 1 \\\ 1 \end{bmatrix}
⇒X′AkX=[3k+3]
⇒ [3k + 3] = 33 (here it shall be [33] as matrix can’t be equal to a scalar)
i.e. [3k + 3] = 33
3k + 3 = [33] ⇒ k = 10
If k is odd and apply above process, we don’t get odd value of k
∴ k = 10
So, the answer is 10.