Solveeit Logo

Question

Mathematics Question on Matrices

Let X=[010 001 000 ]X = \begin{bmatrix} 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ 0 & 0 & 0 \\\ \end{bmatrix},
Y = α I + β X + γ X 2 and
Z = α²l - αβX + (β² - αϒ)X² ,α,β,ϒ ∈ R.
If Y1=[152515 01525 0015 ]Y^{-1} = \begin{bmatrix} \frac{1}{5} & -\frac{2}{5} & \frac{1}{5} \\\ 0 & \frac{1}{5} & -\frac{2}{5} \\\ 0 & 0 & \frac{1}{5} \\\ \end{bmatrix},
then ( α - β + ϒ )² is equal to ________.

Answer

The correct answer is 100
∵ $$X = \begin{bmatrix} 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ 0 & 0 & 0 \\\ \end{bmatrix}
X2=[001 000 000 ]X^2 = \begin{bmatrix} 0 & 0 & 1 \\\ 0 & 0 & 0 \\\ 0 & 0 & 0 \\\ \end{bmatrix}
Y=αl+βX+γX2=∴ Y = αl + βX + γX² = [αβγ 0αβ 00α ]\begin{bmatrix} \alpha & \beta & \gamma \\\ 0 & \alpha & \beta \\\ 0 & 0 & \alpha \\\ \end{bmatrix}
∵ γ.γ-1 = l
[αβγ 0αβ 00α ][152515 01525 0015 ]=[100 010 001 ]\begin{bmatrix} \alpha & \beta & \gamma \\\ 0 & \alpha & \beta \\\ 0 & 0 & \alpha \\\ \end{bmatrix} \begin{bmatrix} \frac{1}{5} & -\frac{2}{5} & \frac{1}{5} \\\ 0 & \frac{1}{5} & -\frac{2}{5} \\\ 0 & 0 & \frac{1}{5} \\\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{bmatrix}
[α5β2α5α2β+γ5 0α5β2α5 00α5 ]=[000 010 001 ]\begin{bmatrix} \frac{\alpha}{5} & \beta - \frac{2\alpha}{5} & \alpha - \frac{2\beta + \gamma}{5} \\\ 0 & \frac{\alpha}{5} & \beta - \frac{2\alpha}{5} \\\ 0 & 0 & \frac{\alpha}{5} \\\ \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{bmatrix}
α=5,β=10,γ=15∴ α = 5, β = 10 , γ = 15
Therefore , (αβγ)2=100( α - β - γ )² = 100