Solveeit Logo

Question

Question: Let x be the arithmetic mean and y, z be the two geometric mean between any two positive numbers, th...

Let x be the arithmetic mean and y, z be the two geometric mean between any two positive numbers, then \dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}=\\_\\_\\_\\_\\_

Explanation

Solution

Arithmetic mean of two positive numbers a, b is x=a+b2x=\dfrac{a+b}{2}. Consider a, y, z, b to be the geometric progression where y and z are geometric mean between a and b. Using this progression find the common ratio, r=(ana1)1n1r={{\left( \dfrac{{{a}_{n}}}{{{a}_{1}}} \right)}^{\dfrac{1}{n-1}}} where a1{{a}_{1}} is the first term, an{{a}_{n}} is the last term and nn is the total number of terms. Find y and z using y=ary=ar and z=ar2z=a{{r}^{2}}. Substitute the values of x, y and z in y3+z3xyz\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}.

Complete step by step answer:
We are given in question that x is the arithmetic mean and y, z be two geometric mean between any two positive numbers. So let us consider two positive numbers to be a and b.
Then the arithmetic mean of these two numbers will be equal to the sum of a and b divided by 2, where 2 is the total number of terms.
Thus, arithmetic mean, x=a+b2x=\dfrac{a+b}{2}
Let y and z are two geometric means between a and b. Since y and z are geometric means they will surely lie between a and b. So a, y, z, b will be in geometric progression (G.P), now we will be calculating common ratio(r).
We know that if a1,a1r,a1r2,.....,a1rn1,a1rn{{a}_{1}},{{a}_{1}}r,{{a}_{1}}{{r}^{2}},.....,{{a}_{1}}{{r}^{n-1}},{{a}_{1}}{{r}^{n}} be a sequence of G.P then nth{{n}^{th}} term sequence is given by an=a1rn1{{a}_{n}}={{a}_{1}}{{r}^{n-1}} where rr is the common ratio, a1{{a}_{1}} is the first term, nn is the number of terms.
Therefore, an=a1rn1{{a}_{n}}={{a}_{1}}{{r}^{n-1}} can be written as
ana1=rn1\dfrac{{{a}_{n}}}{{{a}_{1}}}={{r}^{n-1}}
Now we will take (1n1)th{{\left( \dfrac{1}{n-1} \right)}^{th}} power on both sides we get,
(ana1)1n1=r.........(1){{\left( \dfrac{{{a}_{n}}}{{{a}_{1}}} \right)}^{\dfrac{1}{n-1}}}=r.........(1)
We can see that the first term is a, the last term is b and the total number of terms is 4 in G.P a, y, z, b. Then common ratio, r can be calculated using equation (1), thus substituting a1=a{{a}_{1}}=a, an=b{{a}_{n}}=b and n=4n=4 in equation (1) we get
r=(ba)141r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{4-1}}}
r=(ba)13r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}
In G.P a, y, z, b we see that y is the second term so y=ary=ar using G.P a1,a1r,a1r2,.....,a1rn1,a1rn{{a}_{1}},{{a}_{1}}r,{{a}_{1}}{{r}^{2}},.....,{{a}_{1}}{{r}^{n-1}},{{a}_{1}}{{r}^{n}}. Thus in y=ary=arsubstituting the value of r=(ba)13r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} we get,
y=a×(ba)13........(2)y=a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}........(2)
In G.P a, y, z, b we see that z is the third term of G.P so z=ar2z=a{{r}^{2}} using G.P a1,a1r,a1r2,.....,a1rn1,a1rn{{a}_{1}},{{a}_{1}}r,{{a}_{1}}{{r}^{2}},.....,{{a}_{1}}{{r}^{n-1}},{{a}_{1}}{{r}^{n}}. Thus in z=ar2z=a{{r}^{2}} substituting the value of r=(ba)13r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} we get,

z=a×(ba)23.........(3)z=a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}}.........(3)
Now putting the values of y and z from equation (2) and (3) in y3+z3xyz\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}we get,
y3+z3xyz=[a×(ba)13]3+[a×(ba)23]3(a+b2)[a×(ba)13][a×(ba)23]\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}=\dfrac{{{\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]}^{3}}+{{\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]}^{3}}}{\left( \dfrac{a+b}{2} \right)\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]}
In the numerator cubing both the terms and in the denominator multiplying the terms [a×(ba)13][a×(ba)23]\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right] we get,
=[a3×(ba)]+[a3×(ba)2](a+b2)[a2×(ba)]=\dfrac{{{\left[ {{a}^{3}}\times \left( \dfrac{b}{a} \right) \right]}^{{}}}+\left[ {{a}^{3}}\times {{\left( \dfrac{b}{a} \right)}^{2}} \right]}{\left( \dfrac{a+b}{2} \right)\left[ {{a}^{2}}\times \left( \dfrac{b}{a} \right) \right]}
=[a2b]+[ab2](a+b2)[ab]=\dfrac{{{\left[ {{a}^{2}}b \right]}^{{}}}+\left[ a{{b}^{2}} \right]}{\left( \dfrac{a+b}{2} \right)\left[ ab \right]}
Taking abab common from the numerator we get ab(a+b)ab(a+b). The above term gets simplified to,
=ab(a+b)(a+b2)(ab)=\dfrac{ab(a+b)}{\left( \dfrac{a+b}{2} \right)(ab)}
In numerator and denominator (ab)(a+b)(ab)(a+b) are common so they get cancelled
=1(12) =2 \begin{aligned} & =\dfrac{1}{\left( \dfrac{1}{2} \right)} \\\ & =2 \\\ \end{aligned}

Hence the value of y3+z3xyz\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz} is 2.

Note: If a1,a1r,a1r2,.....,a1rn1,a1rn{{a}_{1}},{{a}_{1}}r,{{a}_{1}}{{r}^{2}},.....,{{a}_{1}}{{r}^{n-1}},{{a}_{1}}{{r}^{n}} be a sequence of G.P then nth{{n}^{th}} term sequence is given by an=a1rn1{{a}_{n}}={{a}_{1}}{{r}^{n-1}} where rr is the common ratio, a1{{a}_{1}} is the first term, nn is the number of terms.
Therefore, an=a1rn1{{a}_{n}}={{a}_{1}}{{r}^{n-1}} can be written as ana1=rn1\dfrac{{{a}_{n}}}{{{a}_{1}}}={{r}^{n-1}} taking 1n1\dfrac{1}{n-1}power on both sides we get, common ratio as
r=(ana1)1n1r={{\left( \dfrac{{{a}_{n}}}{{{a}_{1}}} \right)}^{\dfrac{1}{n-1}}}. Care should be taken while evaluating y3+z3xyz=[a×(ba)13]3+[a×(ba)23]3(a+b2)[a×(ba)13][a×(ba)23]\dfrac{{{y}^{3}}+{{z}^{3}}}{xyz}=\dfrac{{{\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]}^{3}}+{{\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]}^{3}}}{\left( \dfrac{a+b}{2} \right)\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \right]\left[ a\times {{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}} \right]} proper brackets should be given so that confusion is not created.