Solveeit Logo

Question

Mathematics Question on Probability

Let XX be a random variable with its expectation E(X)=3E(X)=3 and its variance V(X)=2V(X)=2 . If VV is another random variable defined by Y=10X,Y=10X, then the ordered pair (E(Y),V(Y))(E(Y),\,V(Y)) is equal to

A

(10,200)(10,\,200)

B

(30,20)(30,\,20)

C

(10,20)(10,\,20)

D

(30,200)(30,\,200)

Answer

(30,200)(30,\,200)

Explanation

Solution

Given, E(X)=3,V(X)=2E(X)=3,\,\,\,V(X)=2 We know that, if y=aX+b,y=aX+b,
then E(y)=E(aX+b)=aE(X)+bE(y)=E(aX+b)=a\,\,E(X)+b and V(y)=a2V(X)+bV(y)={{a}^{2}}\,V(X)+b
Here, we have y=10Xy=10\,X
\therefore E(y)=E(10X)=10E(X)E(y)=E(10X)=10E(X)
10×(3)=3010\times (3)=30
and V(y)=V(10X)V(y)=V(10X)
=(10)2V(X)={{(10)}^{2}}\,V(X)
=100(2)=200=100(2)=200
Hence, E(y),V(y)=(30,200)\\{E(y),\,V(y)\\}=(30,\,\,200)