Solveeit Logo

Question

Statistics Question on Multivariate Distributions

Let X be a random variable having binomial distribution with parameters n(> 1) and p(0 < p < 1). Then E(11+X)E(\frac{1}{1+X}) equals

A

1(1p)n+1(n+1)p\frac{1-(1-p)^{n+1}}{(n+1)p}

B

1pn+1(n+1)(1p)\frac{1-p^{n+1}}{(n+1)(1-p)}

C

(1p)n+1n(1p)\frac{(1-p)^{n+1}}{n(1-p)}

D

1pn(n+1)p\frac{1-p^{n}}{(n+1)p}

Answer

1(1p)n+1(n+1)p\frac{1-(1-p)^{n+1}}{(n+1)p}

Explanation

Solution

The correct option is (A) : 1(1p)n+1(n+1)p\frac{1-(1-p)^{n+1}}{(n+1)p}.