Solveeit Logo

Question

Mathematics Question on Probability

Let XX be a random variable following Binomial distribution B in(n.pn.p),where n is the number of independent Bernoulli trials and pp is the probability of success. If E(X)=1E(X)=1 and Var(X)=45Var(X)=\dfrac{4}{5} ,then the values of nn and pp are

A

n=5,p=45n=5,p=\dfrac{4}{5}

B

n=1,p=15n=1,p=\dfrac{1}{5}

C

n=1,p=1n=1,p=1

D

n=5,p=15n=5,p=\dfrac{1}{5}

E

n=1,p=45n=1,p=\dfrac{4}{5}

Answer

n=5,p=15n=5,p=\dfrac{1}{5}

Explanation

Solution

Give that;

E(X)=n.p=1E(X)=n.p=1 and Var(X)=4.5Var(X)=4.5

We know that,

Var(X)=n.p(1p)Var(X)=n.p(1−p)

145=p⇒1-\dfrac{4}{5}=p

0.2=p⇒0.2=p

p=0.2=15p=0.2=\dfrac{1}{5}

and

n=1/0.2=5n=1/0.2=5

n=5n=5

Hence the required nn and pp are 55 and 15\dfrac{1}{5} respectively. (_Ans)