Solveeit Logo

Question

Quantitative Aptitude Question on Logarithms

Let xx be a positive real number such that 4log10x+4log100x+8log1000x=134 \log_{10} x + 4 \log_{100} x + 8 \log_{1000} x = 13 , then the greatest integer not exceeding xx. is

Answer

We are given the equation:

4log10x+4log100x+8log1000x=134\log_{10} x + 4\log_{100} x + 8\log_{1000} x = 13.

We can simplify the logarithms:

log100x=log10xlog10100=log10x2\log_{100} x = \frac{\log_{10} x}{\log_{10} 100} = \frac{\log_{10} x}{2},
log1000x=log10xlog101000=log10x3\log_{1000} x = \frac{\log_{10} x}{\log_{10} 1000} = \frac{\log_{10} x}{3}.

Substitute these into the equation:

4log10x+4(log10x2)+8(log10x3)=134\log_{10} x + 4\left(\frac{\log_{10} x}{2}\right) + 8\left(\frac{\log_{10} x}{3}\right) = 13,
4log10x+2log10x+83log10x=134\log_{10} x + 2\log_{10} x + \frac{8}{3}\log_{10} x = 13.

Factor out log10x\log_{10} x:

(4+2+83)log10x=13\left(4 + 2 + \frac{8}{3}\right)\log_{10} x = 13,
(183+83)log10x=13\left(\frac{18}{3} + \frac{8}{3}\right)\log_{10} x = 13,
263log10x=13\frac{26}{3}\log_{10} x = 13.

Solve for log10x\log_{10} x:

log10x=13×326=3926=1.5\log_{10} x = \frac{13 \times 3}{26} = \frac{39}{26} = 1.5.

Thus, x=101.5=10×1031.62x = 10^{1.5} = 10 \times \sqrt{10} \approx 31.62.
The greatest integer not exceeding xx is 31.

Explanation

Solution

We are given the equation:

4log10x+4log100x+8log1000x=134\log_{10} x + 4\log_{100} x + 8\log_{1000} x = 13.

We can simplify the logarithms:

log100x=log10xlog10100=log10x2\log_{100} x = \frac{\log_{10} x}{\log_{10} 100} = \frac{\log_{10} x}{2},
log1000x=log10xlog101000=log10x3\log_{1000} x = \frac{\log_{10} x}{\log_{10} 1000} = \frac{\log_{10} x}{3}.

Substitute these into the equation:

4log10x+4(log10x2)+8(log10x3)=134\log_{10} x + 4\left(\frac{\log_{10} x}{2}\right) + 8\left(\frac{\log_{10} x}{3}\right) = 13,
4log10x+2log10x+83log10x=134\log_{10} x + 2\log_{10} x + \frac{8}{3}\log_{10} x = 13.

Factor out log10x\log_{10} x:

(4+2+83)log10x=13\left(4 + 2 + \frac{8}{3}\right)\log_{10} x = 13,
(183+83)log10x=13\left(\frac{18}{3} + \frac{8}{3}\right)\log_{10} x = 13,
263log10x=13\frac{26}{3}\log_{10} x = 13.

Solve for log10x\log_{10} x:

log10x=13×326=3926=1.5\log_{10} x = \frac{13 \times 3}{26} = \frac{39}{26} = 1.5.

Thus, x=101.5=10×1031.62x = 10^{1.5} = 10 \times \sqrt{10} \approx 31.62.
The greatest integer not exceeding xx is 31.