Question
Quantitative Aptitude Question on Logarithms
Let x be a positive real number such that 4log10x+4log100x+8log1000x=13 , then the greatest integer not exceeding x. is
We are given the equation:
4log10x+4log100x+8log1000x=13.
We can simplify the logarithms:
log100x=log10100log10x=2log10x,
log1000x=log101000log10x=3log10x.
Substitute these into the equation:
4log10x+4(2log10x)+8(3log10x)=13,
4log10x+2log10x+38log10x=13.
Factor out log10x:
(4+2+38)log10x=13,
(318+38)log10x=13,
326log10x=13.
Solve for log10x:
log10x=2613×3=2639=1.5.
Thus, x=101.5=10×10≈31.62.
The greatest integer not exceeding x is 31.
Solution
We are given the equation:
4log10x+4log100x+8log1000x=13.
We can simplify the logarithms:
log100x=log10100log10x=2log10x,
log1000x=log101000log10x=3log10x.
Substitute these into the equation:
4log10x+4(2log10x)+8(3log10x)=13,
4log10x+2log10x+38log10x=13.
Factor out log10x:
(4+2+38)log10x=13,
(318+38)log10x=13,
326log10x=13.
Solve for log10x:
log10x=2613×3=2639=1.5.
Thus, x=101.5=10×10≈31.62.
The greatest integer not exceeding x is 31.