Solveeit Logo

Question

Question: Let ƒ(x) be a function satisfying ƒ¢(x) = ƒ(x) with ƒ(0) = 1 and g(1) and g(x) be a function that sa...

Let ƒ(x) be a function satisfying ƒ¢(x) = ƒ(x) with ƒ(0) = 1 and g(1) and g(x) be a function that satisfies ƒ(x) + g(x) = x2. Then the value of the integral 01f\int _ { 0 } ^ { 1 } f (x) g(x) dx is -

A

e + e2232\frac { \mathrm { e } ^ { 2 } } { 2 } - \frac { 3 } { 2 }

B

e – 32\frac { 3 } { 2 }

C

e + +52\frac { 5 } { 2 }

D

e – 52\frac { 5 } { 2 }

Answer

e – 32\frac { 3 } { 2 }

Explanation

Solution

g(x) dx = (x2 – ex) dx

[Q ƒ(x) = ex satisfies ƒ ¢(x) = ƒ(x) and ƒ(0) = 1]

= exdx –dx

= ex dx – [e2x2]01\left[ \frac { \mathrm { e } ^ { 2 \mathrm { x } } } { 2 } \right] _ { 0 } ^ { 1 }

= e – 2[[xex]0101exdx]\left[ \left[ \mathrm { xe } ^ { \mathrm { x } } \right] _ { 0 } ^ { 1 } - \int _ { 0 } ^ { 1 } \mathrm { e } ^ { \mathrm { x } } \mathrm { dx } \right]12\frac { 1 } { 2 }e2 + 12\frac { 1 } { 2 }

= e – 2 [e – (e – 1)] – 12\frac { 1 } { 2 }e2 + 12\frac { 1 } { 2 }

= e – 2 – 12\frac { 1 } { 2 }e2 + 12\frac { 1 } { 2 } = e – e22\frac { \mathrm { e } ^ { 2 } } { 2 }32\frac { 3 } { 2 } .