Solveeit Logo

Question

Statistics Question on Univariate Distributions

Let X and Y be two independent random variables having N(0, σ12σ^2_1) and N(0, σ22σ^2_2) distributions, respectively, where 0 < σ1 < σ2. Then which of the following statements is/are true ?

A

X + Y and X - Y are independent

B

2X + Y and X - Y are independent if 2σ12=σ222σ^2_1=σ^2_2

C

X + Y and X - Y are identically distributed

D

X + Y and 2X - Y are independent if 2σ12=σ222σ^2_1=σ^2_2

Answer

2X + Y and X - Y are independent if 2σ12=σ222σ^2_1=σ^2_2

Explanation

Solution

The correct option is (B) : 2X + Y and X - Y are independent if 2σ12=σ222σ^2_1=σ^2_2, (C) : X + Y and X - Y are identically distributed and (D) : X + Y and 2X - Y are independent if 2σ12=σ222σ^2_1=σ^2_2.