Question
Mathematics Question on Matrices
Let X and Y be two arbitrary, 3×3, non-zero, skew-symmetric matrices and Z be an arbitrary 3×3, nonzero, symmetric matrix. Then which of the following matrices is (are) skew symmetric ?
A
Y3Z4−Z4Y3
B
X44+Y44
C
X4Z3−Z3X4
D
X23+Y23
Answer
X23+Y23
Explanation
Solution
XT=−XYT=−YZT=Z
(A)(Y3Z4−Z4Y3)T=(Y3Z4)T−(Z4Y3)T
=(Z4)T(Y3)T−(Y3)T(Z4)T
=(ZT)4(YT)3−(YT)3(ZT)4
=Z4(−Y)3−(−Y)3(Z)4
=−Z4Y3+Y3Z4
=Y3Z4−Z4Y3
Hence it is symmetric matrix.
(B)(X44+Y44)T=(XT)44+(YT)44
=X44+Y44
Hence it is symmetric matrix.
(C)(X4Z3−Z3X4)T=(X4Z3)T−(Z3X4)T
=(ZT)3(XT)4−(XT)4(ZT)3
=Z3X4−X4Z3
=−(X4Z3−Z3X4)
Hence it is skew symmetric matrix.
(D)(X23+Y23)T=(XT)23+(YT)23
=−(X23+Y23)
Hence it is skew symmetric matrix.