Solveeit Logo

Question

Statistics Question on Multivariate Distributions

Let XX and YY be continuous random variables having the joint probability density function
f(x,y)={ex,if 0y<x<\0,otherwisef(x, y) = \begin{cases} e^{-x}, & \text{if } 0 \leq y < x < \infty \\\0, & \text{otherwise}\end{cases}
Then which of the following statements is/are correct?

A

P(Y2=3X)=0P(Y^2 = 3X) = 0

B

P(X>2Y)=12P(X > 2Y) = \frac{1}{2}

C

P(XY1)=e1P(X - Y \geq 1) = e^{-1}

D

P(X>ln2Y>ln3)=0P(X > \ln 2 \mid Y > \ln 3) = 0

Answer

P(Y2=3X)=0P(Y^2 = 3X) = 0

Explanation

Solution

The correct option is (A): P(Y2=3X)=0P(Y^2 = 3X) = 0,(B):,P(X>2Y)=12P(X > 2Y) = \frac{1}{2},(C): P(XY1)=e1P(X - Y \geq 1) = e^{-1}