Solveeit Logo

Question

Question: Let \(x _ { 1 } , x _ { 2 } , \ldots , x _ { n }\) be n observations such that \(\sum x _ { i } ^ ...

Let x1,x2,,xnx _ { 1 } , x _ { 2 } , \ldots , x _ { n } be n observations such that xi2=400\sum x _ { i } ^ { 2 } = 400 and xi=80\sum x _ { i } = 80. Then a possible value of n among the following is

A

9

B

12

C

15

D

18

Answer

18

Explanation

Solution

Since, root mean square ≥ arithmetic mean

i=1nxi2ni=1nxin=400n80nn16\sqrt { \frac { \sum _ { i = 1 } ^ { n } x _ { i } ^ { 2 } } { n } } \geq \frac { \sum _ { i = 1 } ^ { n } x _ { i } } { n } = \sqrt { \frac { 400 } { n } } \geq \frac { 80 } { n } \Rightarrow n \geq 16

Hence, possible value of n = 18.