Solveeit Logo

Question

Question: Let \[x = {4^{{{\log }_2}\sqrt {{9^{k - 1}} + 7} }}\] and \[y = \dfrac{1}{{{{32}^{\log {}_2\sqrt[5] ...

Let x=4log29k1+7x = {4^{{{\log }_2}\sqrt {{9^{k - 1}} + 7} }} and y=132log23k1+15y = \dfrac{1}{{{{32}^{\log {}_2\sqrt[5] {{{3^{k - 1}} + 1}}}}}} and xy=4, then the sum of the cubes of the real values (s) of k is
A.1
B.5
C.8
D.9

Explanation

Solution

Hint : In this question the value of x and y are given and the relation between the x and y are also given so by using the logarithm power rule and the inverse property we will further solve the equation and then find the value of k.

Complete step-by-step answer :
Given functions,
x=4log29k1+7x = {4^{{{\log }_2}\sqrt {{9^{k - 1}} + 7} }}
y=132log23k1+15y = \dfrac{1}{{{{32}^{\log {}_2\sqrt[5] {{{3^{k - 1}} + 1}}}}}}
xy=4(i)xy = 4 - - (i)
We can write (i) as by substituting x and y

xy=4 4log29k1+732log23k1+15=4  xy = 4 \\\ \Rightarrow \dfrac{{{4^{{{\log }_2}\sqrt {{9^{k - 1}} + 7} }}}}{{{{32}^{\log {}_2\sqrt[5] {{{3^{k - 1}} + 1}}}}}} = 4 \\\

Now as we know 4=224 = {2^2} and 32=2532 = {2^5} so we can further write the equation as
22log2(9k1+7)1225log2(3k1+1)15=4\dfrac{{{2^{2{{\log }_2}{{\left( {{9^{k - 1}} + 7} \right)}^{\dfrac{1}{2}}}}}}}{{{2^{5\log {}_2{{\left( {{3^{k - 1}} + 1} \right)}^{\dfrac{1}{5}}}}}}} = 4
Now by using the logarithm power rule (logaxp=plogax{\log _a}{x^p} = p{\log _a}x ) we can further write the above equation as

22×12log2(9k1+7)25×15log2(3k1+1)=4 2log2(9k1+7)2log2(3k1+1)=4  \Rightarrow \dfrac{{{2^{2 \times \dfrac{1}{2}{{\log }_2}\left( {{9^{k - 1}} + 7} \right)}}}}{{{2^{5 \times \dfrac{1}{5}\log {}_2\left( {{3^{k - 1}} + 1} \right)}}}} = 4 \\\ \Rightarrow \dfrac{{{2^{{{\log }_2}\left( {{9^{k - 1}} + 7} \right)}}}}{{{2^{\log {}_2\left( {{3^{k - 1}} + 1} \right)}}}} = 4 \;

Now by applying the inverse property of logarithm (blogbx=x{b^{{{\log }_b}x}} = x ) in the above obtained equation we can further write

2log2(9k1+7)2log2(3k1+1)=4 9k1+73k1+1=4  \Rightarrow \dfrac{{{2^{{{\log }_2}\left( {{9^{k - 1}} + 7} \right)}}}}{{{2^{\log {}_2\left( {{3^{k - 1}} + 1} \right)}}}} = 4 \\\ \Rightarrow \dfrac{{{9^{k - 1}} + 7}}{{{3^{k - 1}} + 1}} = 4 \;

Hence by further solving (cross multiplying) this we get

9k1+7=4(3k1+1) (3)2(k1)+7=4(3k1+1) 32k32+7=4(3k31+1) (3k)232+7=4(3k31+1) \Rightarrow {9^{k - 1}} + 7 = 4\left( {{3^{k - 1}} + 1} \right) \\\ {\left( 3 \right)^{2\left( {k - 1} \right)}} + 7 = 4\left( {{3^{k - 1}} + 1} \right) \\\ \Rightarrow {3^{2k}} \cdot {3^{ - 2}} + 7 = 4\left( {{3^k} \cdot {3^{ - 1}} + 1} \right) \\\ {\left( {{3^k}} \right)^2} \cdot {3^{ - 2}} + 7 = 4\left( {{3^k} \cdot {3^{ - 1}} + 1} \right) \\\

Now let3k=p{3^k} = p , so we can further write the equation as
p232+7=4(p31+1){p^2} \cdot {3^{ - 2}} + 7 = 4\left( {p \cdot {3^{ - 1}} + 1} \right)
Hence by further solving, we get

p29+7=4(p3+1) p29+7=43p+4 p2943p+3=0 p212p+27=0  \Rightarrow \dfrac{{{p^2}}}{9} + 7 = 4\left( {\dfrac{p}{3} + 1} \right) \\\ \Rightarrow \dfrac{{{p^2}}}{9} + 7 = \dfrac{4}{3}p + 4 \\\ \Rightarrow \dfrac{{{p^2}}}{9} - \dfrac{4}{3}p + 3 = 0 \\\ {p^2} - 12p + 27 = 0 \;

Now we solve the obtained quadratic equation to find the value of p,

p212p+27=0 p23p9p+27=0 p(p3)9(p3)=0 (p3)(p9)=0  \Rightarrow {p^2} - 12p + 27 = 0 \\\ \Rightarrow {p^2} - 3p - 9p + 27 = 0 \\\ \Rightarrow p\left( {p - 3} \right) - 9\left( {p - 3} \right) = 0 \\\ \Rightarrow \left( {p - 3} \right)\left( {p - 9} \right) = 0 \;

Hence we get the values of p=3,9p = 3,9
Now, since 3k=p{3^k} = p , hence we get the value of k as
When p=3p = 3
So,3k=31{3^k} = {3^1}
Therefore k=1k = 1
When p=9p = 9
So, 3k=32{3^k} = {3^2}
Therefore k=2k = 2
Hence the option which satisfies the value of k is Option A.
So, the correct answer is “Option A”.

Note : Students often confuse the power rule and the inverse rule of the logarithmic function. Power rule of the logarithmic function is logaxp=plogax{\log _a}{x^p} = p{\log _a}x while the inverse rule of the logarithmic function is blogbx=x{b^{{{\log }_b}x}} = x .