Solveeit Logo

Question

Question: Let ƒ(x) = \(2\pi\pi\). Then the set of values of x for which f(x) = 0, is –...

Let ƒ(x) = 2ππ2\pi\pi. Then the set of values of x for which f(x) = 0, is –

A

|2x| >sin2x|\sin 2x|

B

|(2x)| <π4\frac{\pi}{4}

C

|2x| ≥π2\frac{\pi}{2}

D

|2x| ≤π\pi

Answer

|2x| >sin2x|\sin 2x|

Explanation

Solution

ƒ(x) = 0 if and only if, (3πtan12x)2>1\left( \frac { 3 } { \pi } \tan ^ { - 1 } 2 \mathrm { x } \right) ^ { 2 } > 1

⇒ tan–1 2x > π3\frac { \pi } { 3 } or tan–1 2x < – π3\frac { \pi } { 3 }

⇒ 2x >3\sqrt { 3 } or 2x < –3\sqrt { 3 }

⇒ |2x| >3\sqrt { 3 }

Hence (1) is the correct answer.