Question
Mathematics Question on Application of derivatives
Let x=2 be a local minima of the function f(x)=2x4−18x2+8x+12, x∈(−4,4) If M is local maximum value of the function f in (−4,4), then M=
A
186−233
B
126−233
C
126−231
D
186−231
Answer
126−233
Explanation
Solution
f′(x)=8x3−36x+8=4(2x3−9x+2)
f′(x)=0
∴x=26−2
Now
f(x)=(x2−2x−29)(2x2+4x−1)+24x+7.5
∴f(26−2)=M=126−233