Solveeit Logo

Question

Mathematics Question on Application of derivatives

Let x=2x=2 be a local minima of the function f(x)=2x418x2+8x+12f(x)=2 x^4-18 x^2+8 x+12, x(4,4)x \in(-4,4) If MM is local maximum value of the function ff in (4,4)(-4,4), then M=M =

A

18633218 \sqrt{6}-\frac{33}{2}

B

12633212 \sqrt{6}-\frac{33}{2}

C

12631212 \sqrt{6}-\frac{31}{2}

D

18631218 \sqrt{6}-\frac{31}{2}

Answer

12633212 \sqrt{6}-\frac{33}{2}

Explanation

Solution

f′(x)=8x3−36x+8=4(2x3−9x+2)
f′(x)=0
∴x=26​−2​
Now
f(x)=(x2−2x−29​)(2x2+4x−1)+24x+7.5
∴f(26​−2​)=M=126​−233​