Solveeit Logo

Question

Question: Let \({(x + 10)^{50}} + {(x - 10)^{50}} = {a_0} + {a_1}x + {a_2}{x^2} + ......... + {a_{50}}{x^{50}}...

Let (x+10)50+(x10)50=a0+a1x+a2x2+.........+a50x50{(x + 10)^{50}} + {(x - 10)^{50}} = {a_0} + {a_1}x + {a_2}{x^2} + ......... + {a_{50}}{x^{50}}, for all xRx \in R, then the value of the a2a0\dfrac{{{a_2}}}{{{a_0}}}
(A) 12.50
(B) 12.00
(C) 12.75
(D) 12.25

Explanation

Solution

Hint: In this question, the term a2{a_2} = coefficient of x2{x^2} and the term a0{a_0} = coefficient of x0{x^0}, then you can find the value of a2a0\dfrac{{{a_2}}}{{{a_0}}} = coefficient of x2coefficient of x0\dfrac{{{\text{coefficient of }}{x^2}}}{{{\text{coefficient of }}{x^0}}}.

Complete step-by-step solution -
As we know that, the general term in the expansion (a+b)n{(a + b)^n} is given by
tr+1=nCr(a)nr(b)r.............(1){t_{r + 1}} = {}^n{C_r}{(a)^{n - r}}{(b)^r}.............(1)
Now, the given expansion (x+10)50{\left( {x + 10} \right)^{50}} is comparing with the expansion (a+b)n{\left( {a + b} \right)^n} and then we have
a=x,b=10 and n=50a = x, b = 10{\text{ and }}n = 50
Now put all the values a, b and n in the equation (1), we get
tr+1=50Cr(x)50r(10)r.............(2){t_{r + 1}} = {}^{50}{C_r}{(x)^{50 - r}}{(10)^r}.............(2)

For coefficient of x2{x^2}, we must have
50r=250 - r = 2
r=502r = 50 - 2
r=48r = 48
Put the value of r=48r = 48 in the equation (2), we get
t48+1=50C48(x)5048(10)48{t_{48 + 1}} = {}^{50}{C_{48}}{(x)^{50 - 48}}{(10)^{48}}
t49=50C48(x)2(10)48{t_{49}} = {}^{50}{C_{48}}{(x)^2}{(10)^{48}}
t49=50C48(10)48x2...............(3){t_{49}} = {}^{50}{C_{48}}{(10)^{48}}{x^2}...............(3)

For coefficient of x0{x^0}, we must have
50r=050 - r = 0
r=50r = 50
Put the value of r=50r = 50 in the equation (2), we get
t50+1=50C50(x)5050(10)50{t_{50 + 1}} = {}^{50}{C_{50}}{(x)^{50 - 50}}{(10)^{50}}
t51=50C50(x)0(10)50{t_{51}} = {}^{50}{C_{50}}{(x)^0}{(10)^{50}}
t51=50C50(10)50x0................(4){t_{51}} = {}^{50}{C_{50}}{(10)^{50}}{x^0}................(4)
Also, the given second expansion (x10)50=[x+(10)]50{\left( {x - 10} \right)^{50}} = {\left[ {x + ( - 10)} \right]^{50}} is comparing with the expansion (a+b)n{\left( {a + b} \right)^n} and then we have
a=x,b=10 and n=50a = x, b = - 10{\text{ and }}n = 50
Now put all the values a, b and n in the equation (1), we get
tr+1=50Cr(x)50r(10)r.............(5){t_{r + 1}} = {}^{50}{C_r}{(x)^{50 - r}}{( - 10)^r}.............(5)

For coefficient of x2{x^2}, we must have
50r=250 - r = 2
r=502r = 50 - 2
r=48r = 48
Put the value of r=48r = 48 in the equation (5), we get
t48+1=50C48(x)5048(10)48{t_{48 + 1}} = {}^{50}{C_{48}}{(x)^{50 - 48}}{( - 10)^{48}}
t49=50C48(x)2(10)48{t_{49}} = {}^{50}{C_{48}}{(x)^2}{(10)^{48}}
t49=50C48(10)48x2.............(6){t_{49}} = {}^{50}{C_{48}}{(10)^{48}}{x^2}.............(6)

For coefficient of x0{x^0}, we must have
50r=050 - r = 0
r=50r = 50
Put the value of r=50r = 50 in the equation (5), we get
t50+1=50C50(x)5050(10)50{t_{50 + 1}} = {}^{50}{C_{50}}{(x)^{50 - 50}}{( - 10)^{50}}
t51=50C50(x)0(10)50{t_{51}} = {}^{50}{C_{50}}{(x)^0}{(10)^{50}}
t51=50C50(10)50x0.............(7){t_{51}} = {}^{50}{C_{50}}{(10)^{50}}{x^0}.............(7)
From the equations (3) and (6), we get
Coefficient of x2=a2=50C48(10)48+50C48(10)48=50C48[(10)48+(10)48]{x^2} = {a_2} = {}^{50}{C_{48}}{(10)^{48}} + {}^{50}{C_{48}}{(10)^{48}} = {}^{50}{C_{48}}\left[ {{{(10)}^{48}} + {{(10)}^{48}}} \right]
From the equations (4) and (7), we get
Coefficient of x0=a0=50C50(10)50+50C50(10)50=50C50[(10)50+(10)50]{x^0} = {a_0} = {}^{50}{C_{50}}{(10)^{50}} + {}^{50}{C_{50}}{(10)^{50}} = {}^{50}{C_{50}}\left[ {{{(10)}^{50}} + {{(10)}^{50}}} \right]
Consider the ratio of coefficient of x2{x^2} and coefficient of x0{x^0},

a2a0=50C48[(10)48+(10)48]50C50[(10)50+(10)50]=50C4850C50×2×(10)482×(10)50=50C4850C50×(10)48(10)50=50C4850C50×1(10)2.......(8)\dfrac{{{a_2}}}{{{a_0}}} = \dfrac{{{}^{50}{C_{48}}\left[ {{{(10)}^{48}} + {{(10)}^{48}}} \right]}}{{{}^{50}{C_{50}}\left[ {{{(10)}^{50}} + {{(10)}^{50}}} \right]}} = \dfrac{{{}^{50}{C_{48}}}}{{{}^{50}{C_{50}}}} \times \dfrac{{2 \times {{(10)}^{48}}}}{{2 \times {{(10)}^{50}}}} = \dfrac{{{}^{50}{C_{48}}}}{{{}^{50}{C_{50}}}} \times \dfrac{{{{(10)}^{48}}}}{{{{(10)}^{50}}}} = \dfrac{{{}^{50}{C_{48}}}}{{{}^{50}{C_{50}}}} \times \dfrac{1}{{{{(10)}^2}}}.......(8)

By using the formula of combination, nCr=n!r!(nr)!{}^n{C_r} = \dfrac {{n!}}{{r!(n - r)!}} .

We have 50C48{}^{50}{C_{48}} =50!48!(2!) \dfrac{{50!}}{{48!(2!)}} = 50×491×2\dfrac{{50 \times 49}}{{1 \times 2}} and 50C50=50!50!(0!)=1{}^{50}{C_{50}} = \dfrac{{50!}}{{50!(0!)}} = 1
Put the values of 50C48^{50}{C_{48}} and 50C50^{50}{C_{50}} in the equation (8), we get
a2a0=50×492×1(10)2\dfrac{{{a_2}}}{{{a_0}}} = \dfrac{{50 \times 49}}{2} \times \dfrac{1}{{{{(10)}^2}}}
a2a0=50×492×1100=492×2=494=12.25\dfrac{{{a_2}}}{{{a_0}}} = \dfrac{{50 \times 49}}{2} \times \dfrac{1}{{100}} = \dfrac{{49}}{{2 \times 2}} = \dfrac{{49}}{4} = 12.25
Hence, the correct option of the given question is option (d).

Note: Alternatively this question is solved by using the formula (x+a)n+(xa)n=2[nC0xna0+n2C0xn2a2+n4C0xn4a4+.............]{(x + a)^n} + {(x - a)^n} = 2\left[ {^n{C_0}{x^n}{a^0}{ + ^{n - 2}}{C_0}{x^{n - 2}}{a^2}{ + ^{n - 4}}{C_0}{x^{n - 4}}{a^4} + .............} \right]. As the terms having odd power of a will be canceled out and the terms of having even power of a will be added.