Question
Mathematics Question on Sequence and series
Let x1,x2,x3,x4 be the solution of the equation 4x4+8x3−17x2−12x+9=0 and (4+x12)(4+x22)(4+x32)(4+x42)=16125m. Then the value of m is ______.
Answer
The given polynomial can be expressed as:
4x4+8x3−17x2−12x+9=4(x−x1)(x−x2)(x−x3)(x−x4).
Let x1=2i and x2=−2i. Substituting these values:
64−64i+68−24i+9=4(2i−x1)(2i−x2)(2i−x3)(2i−x4).
Simplify:
141−88i…(1)
Similarly, for −2i:
64+64i+68+24i+9=4(−2i−x1)(−2i−x2)(−2i−x3)(−2i−x4).
Simplify:
141+88i…(2)
Using the given condition:
16125m=161412+882.
Calculate:
m=221.