Solveeit Logo

Question

Mathematics Question on Sequence and series

Let x1,x2,x3,x4x_1, x_2, x_3, x_4 be the solution of the equation 4x4+8x317x212x+9=04x^4 + 8x^3 - 17x^2 - 12x + 9 = 0 and (4+x12)(4+x22)(4+x32)(4+x42)=12516m. \left(4 + x_1^2\right)\left(4 + x_2^2\right)\left(4 + x_3^2\right)\left(4 + x_4^2\right) = \frac{125}{16} m. Then the value of mm is ______.

Answer

The given polynomial can be expressed as:

4x4+8x317x212x+9=4(xx1)(xx2)(xx3)(xx4).4x^4 + 8x^3 - 17x^2 - 12x + 9 = 4(x - x_1)(x - x_2)(x - x_3)(x - x_4).

Let x1=2ix_1 = 2i and x2=2ix_2 = -2i. Substituting these values:

6464i+6824i+9=4(2ix1)(2ix2)(2ix3)(2ix4).64 - 64i + 68 - 24i + 9 = 4(2i - x_1)(2i - x_2)(2i - x_3)(2i - x_4).

Simplify:

14188i(1)141 - 88i \quad \dots \quad (1)

Similarly, for 2i-2i:

64+64i+68+24i+9=4(2ix1)(2ix2)(2ix3)(2ix4).64 + 64i + 68 + 24i + 9 = 4(-2i - x_1)(-2i - x_2)(-2i - x_3)(-2i - x_4).

Simplify:

141+88i(2)141 + 88i \quad \dots \quad (2)

Using the given condition:

12516m=1412+88216.\frac{125}{16}m = \frac{141^2 + 88^2}{16}.

Calculate:

m=221.m = 221.