Solveeit Logo

Question

Mathematics Question on Sequence and series

Let x1,x2,x3,,x20x_1, x_2, x_3, …, x_{20} be in geometric progression with x1=3x_1 = 3 and the common ratio 1/2. A new data is constructed replacing each xix_i by (xii)2(x_i – i)^2. If xˉ is the mean of new data, then the greatest integer less than or equal to xˉ is _________

Answer

In given geometric progression,

First term a=x1x_1=3 and common ratio r=12\frac{1}{2}

xr=312r1x_r=3\frac {1}{2}^{r-1}

xr=311220112=611220∑x_r=\frac{31-\frac{1}{2}^{20}} {1-\frac{1}{2}}=61-\frac{1}{2^{20}}

i=120xii2=i=120xi22xii+i2\sum_{i=1}^{20} x_i-i^2=\sum_{i=1}^{20} x_i^2-2x_ii+i^2

Now, i=120xi2=911420114=1211240\sum_{i=1}^{20} x_i^2=\frac{91-\frac{1} {4}^{20}}{1-\frac{1}{4}}=121-\frac{1}{2^{40}}

i=120i2=16×20×21×41=2870\sum_{i=1}^{20} i^2=\frac {1}{6}×20×21×41=2870

and i=120xii=s=3+2312+33122+43123+....AGP\sum_{i=1}^{20} x_ii=s=3+2·3\frac{1}{2}+3·3\frac{1}{2^2}+4·3\frac{1}{2^3}+.... AGP

=622222062-\frac{22}{2^{20}}

xˉ=1212240+28701222222020\bar x=\frac{12-\frac{12}{2^{40}}+2870-122-{\frac{22}{2^{20}}}}{20}

xˉ=28582+12240+22220×120\bar x=\frac{2858}{2}+\frac{-12}{2^{40}}+\frac{22}{2^{20}}×\frac{1}{20}

xˉ=142\bar x=142