Solveeit Logo

Question

Statistics Question on Sampling Distributions

Let X1,X2,,X50X_1, X_2, \ldots, X_{50} be a random sample from a N(0,σ2)N(0, \sigma^2) distribution, where σ>0\sigma > 0. Define
Xˉe=125i=125X2i,\bar{X}_e = \frac{1}{25} \sum_{i=1}^{25} X_{2i}, Xˉo=125i=125X2i1,\bar{X}_o = \frac{1}{25} \sum_{i=1}^{25} X_{2i-1}, Se=124i=125(X2iXˉe)2,S_e = \sqrt{\frac{1}{24} \sum_{i=1}^{25} (X_{2i} - \bar{X}_e)^2}, and So=124i=125(X2i1Xˉo)2.S_o = \sqrt{\frac{1}{24} \sum_{i=1}^{25} (X_{2i-1} - \bar{X}_o)^2}.
Then which of the following statements is/are correct?

A

5XˉeSe\frac{5\bar{X}_e}{S_e} has t24t_{24} distribution

B

5(Xˉe+Xˉo)Se2+So2\frac{5(\bar{X}_e + \bar{X}_o)}{\sqrt{S_e^2 + S_o^2}} has t49t_{49} distribution

C

49So2σ2\frac{49 S_o^2}{\sigma^2} has χ492\chi_{49}^2 distribution

D

So2Se2\frac{S_o^2}{S_e^2} has F24,24F_{24,24} distribution

Answer

5XˉeSe\frac{5\bar{X}_e}{S_e} has t24t_{24} distribution

Explanation

Solution

The correct option is (A):5XˉeSe\frac{5\bar{X}_e}{S_e} has t24t_{24} distribution,(D): So2Se2\frac{S_o^2}{S_e^2} has F24,24F_{24,24} distribution