Solveeit Logo

Question

Mathematics Question on Sequence and series

Let x1,x2,,xnx_{1},x_{2},\cdots,x_{n} be in an A.PA.P. If x1+x4+x9+x11+x20+x22+x27+x30=272,x_{1}+x_{4}+x_{9}+x_{11}+x_{20}+x_{22}+x_{27}+x_{30}=272, then x1+x2+x3++x30x_{1}+x_{2}+x_{3}+\cdots+x_{30} is equal to

A

1020

B

1200

C

716

D

2720

Answer

1020

Explanation

Solution

Given, x1,x2,,xnx_{1}, x_{2}, \ldots, x_{n} are in AP.
and x1+x4+x9+x11+x20+x22+x27+x30=272x_{1}+x_{4}+x_{9}+x_{11}+x_{20} +x_{22}+x_{27}+x_{30}=272
We know that in an APAP , the sum of the terms equidistant from the beginning and end is always same and is equal to the sum of first and last term i.e.,
a1+an=a2+an1=a3+an2=a_{1}+a_{n}=a_{2}+a_{n-1}=a_{3}+a_{n-2}=\ldots
If an APAP consists of 30 terms, then
x1+x30=x4+x27=x9+x22=x11+x20x_{1}+x_{30}=x_{4}+x_{27}=x_{9}+x_{22}=x_{11}+x_{20}
From E (i),
x1+x4+x9+x11+x20+x22+x27+x30=272x_{1}+x_{4}+x_{9}+x_{11}+x_{20}+x_{22} + x_{27}+x_{30}=272
(x1+x30)+(x4+x27)+(x9+x22)+(x11+x20)=272\Rightarrow\left(x_{1}+x_{30}\right)+\left(x_{4}+x_{27}\right)+\left(x_{9}+x_{22}\right)+\left(x_{11}+x_{20}\right)=272
4(x1+x30)=272\Rightarrow 4\left(x_{1}+x_{30}\right)=272
x1+x30=2724=68\Rightarrow x_{1}+x_{30}=\frac{272}{4}=68
S30=302(x1+x30)=15(68)=1020\therefore S_{30}=\frac{30}{2}\left(x_{1}+x_{30}\right)=15(68)=1020