Question
Question: Let $x=-1$ and $x=2$ be the critical points of the function $f(x)=x^3+ax^2+b \log_e |x|+1, x\neq 0$....
Let x=−1 and x=2 be the critical points of the function f(x)=x3+ax2+bloge∣x∣+1,x=0.
Let m and M respectively be the absolute minimum and the absolute maximum values of f in the interval [−2,−21]. Then ∣M+m∣ is equal to (Take loge2=0.7):

Answer
21.1
Explanation
Solution
- Differentiate the function:
Given
f(x)=x3+ax2+bln∣x∣+1,x=0,its derivative is
f′(x)=3x2+2ax+xb.- Find parameters using the critical points:
For x=−1:
f′(−1)=3(1)+2a(−1)+−1b=3−2a−b=0⇒b=3−2a.For x=2:
f′(2)=3(4)+2a(2)+2b=12+4a+2b=0.Substitute b=3−2a:
12+4a+23−2a=0⇒24+8a+3−2a=0⇒27+6a=0,Thus,
a=−627=−29,and
b=3−2(−29)=3+9=12.- Substitute into f(x).
Now,
f(x)=x3−29x2+12ln∣x∣+1.- Evaluate f(x) at the endpoints of [−2,−21] and at the internal critical point x=−1.
-
At x=−2:
f(−2)=(−2)3−29(−2)2+12ln2+1.Calculation:
(−2)3=−8,(−2)2=4,29×4=18, f(−2)=−8−18+12ln2+1=−25+12ln2.Given ln2=0.7,
f(−2)=−25+8.4=−16.6. -
At x=−1 (critical point inside the interval):
f(−1)=(−1)3−29(−1)2+12ln1+1.Since ln1=0:
f(−1)=−1−29+0+1=−29=−4.5. -
At x=−21:
f(−21)=(−21)3−29(−21)2+12ln21+1.Calculation:
(−21)3=−81,(−21)2=41,29×41=89,and since ln21=−ln2=−0.7:
f(−21)=−81−89+12(−0.7)+1=−810−8.4+1. −810=−1.25,so f(−21)=−1.25−8.4+1=−8.65.
- Determine the absolute minimum and maximum on the interval:
From the computed values:
f(−2)=−16.6,f(−1)=−4.5,f(−21)=−8.65.Thus, the absolute maximum is M=f(−1)=−4.5 and the absolute minimum is m=f(−2)=−16.6.
- Compute ∣M+m∣.