Solveeit Logo

Question

Question: Let $x=-1$ and $x=2$ be the critical points of the function $f(x)=x^3+ax^2+b \log_e |x|+1, x\neq 0$....

Let x=1x=-1 and x=2x=2 be the critical points of the function f(x)=x3+ax2+blogex+1,x0f(x)=x^3+ax^2+b \log_e |x|+1, x\neq 0.

Let mm and MM respectively be the absolute minimum and the absolute maximum values of ff in the interval [2,12][-2, -\frac{1}{2}]. Then M+m|M+m| is equal to (Take loge2=0.7\log_e 2=0.7):

Answer

21.1

Explanation

Solution

  1. Differentiate the function:

Given

f(x)=x3+ax2+blnx+1,x0,f(x)=x^3+ax^2+b\ln|x|+1,\quad x\neq0,

its derivative is

f(x)=3x2+2ax+bx.f'(x)=3x^2+2ax+\frac{b}{x}.
  1. Find parameters using the critical points:

For x=1x=-1:

f(1)=3(1)+2a(1)+b1=32ab=0b=32a.f'(-1)=3(1)+2a(-1)+\frac{b}{-1}=3-2a-b=0 \quad\Rightarrow\quad b=3-2a.

For x=2x=2:

f(2)=3(4)+2a(2)+b2=12+4a+b2=0.f'(2)=3(4)+2a(2)+\frac{b}{2}=12+4a+\frac{b}{2}=0.

Substitute b=32ab=3-2a:

12+4a+32a2=024+8a+32a=027+6a=0,12+4a+\frac{3-2a}{2}=0 \quad\Rightarrow\quad 24+8a+3-2a=0\quad\Rightarrow\quad 27+6a=0,

Thus,

a=276=92,a=-\frac{27}{6}=-\frac{9}{2},

and

b=32(92)=3+9=12.b=3-2\left(-\frac{9}{2}\right)=3+9=12.
  1. Substitute into f(x)f(x).

Now,

f(x)=x392x2+12lnx+1.f(x)=x^3-\frac{9}{2}x^2+12\ln|x|+1.
  1. Evaluate f(x)f(x) at the endpoints of [2,12][-2,-\frac{1}{2}] and at the internal critical point x=1x=-1.
  • At x=2x=-2:

    f(2)=(2)392(2)2+12ln2+1.f(-2)=(-2)^3-\frac{9}{2}(-2)^2+12\ln2+1.

    Calculation:

    (2)3=8,(2)2=4,92×4=18,(-2)^3=-8,\quad (-2)^2=4,\quad \frac{9}{2}\times 4=18, f(2)=818+12ln2+1=25+12ln2.f(-2)=-8-18+12\ln2+1=-25+12\ln2.

    Given ln2=0.7\ln2=0.7,

    f(2)=25+8.4=16.6.f(-2)=-25+8.4=-16.6.
  • At x=1x=-1 (critical point inside the interval):

    f(1)=(1)392(1)2+12ln1+1.f(-1)=(-1)^3-\frac{9}{2}(-1)^2+12\ln1+1.

    Since ln1=0\ln1=0:

    f(1)=192+0+1=92=4.5.f(-1)=-1-\frac{9}{2}+0+1=-\frac{9}{2}=-4.5.
  • At x=12x=-\frac{1}{2}:

    f(12)=(12)392(12)2+12ln12+1.f\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^3-\frac{9}{2}\left(-\frac{1}{2}\right)^2+12\ln\frac{1}{2}+1.

    Calculation:

    (12)3=18,(12)2=14,92×14=98,\left(-\frac{1}{2}\right)^3=-\frac{1}{8},\quad \left(-\frac{1}{2}\right)^2=\frac{1}{4},\quad \frac{9}{2}\times\frac{1}{4}=\frac{9}{8},

    and since ln12=ln2=0.7\ln\frac{1}{2}=-\ln2=-0.7:

    f(12)=1898+12(0.7)+1=1088.4+1.f\left(-\frac{1}{2}\right)=-\frac{1}{8}-\frac{9}{8}+12(-0.7)+1=-\frac{10}{8}-8.4+1. 108=1.25,so f(12)=1.258.4+1=8.65.-\frac{10}{8}=-1.25,\quad \text{so } f\left(-\frac{1}{2}\right)=-1.25-8.4+1=-8.65.
  1. Determine the absolute minimum and maximum on the interval:

From the computed values:

f(2)=16.6,f(1)=4.5,f(12)=8.65.f(-2)=-16.6,\quad f(-1)=-4.5,\quad f\left(-\frac{1}{2}\right)=-8.65.

Thus, the absolute maximum is M=f(1)=4.5M=f(-1)=-4.5 and the absolute minimum is m=f(2)=16.6m=f(-2)=-16.6.

  1. Compute M+m|M+m|.
M+m=4.5+(16.6)=21.1M+m=21.1.M+m=-4.5+(-16.6)=-21.1\quad\Rightarrow\quad |M+m|=21.1.