Solveeit Logo

Question

Question: Let we have two points as \[P(a\sec \theta ,b\tan \theta )\] and \[Q(a\sec \phi ,b\tan \phi )\], whe...

Let we have two points as P(asecθ,btanθ)P(a\sec \theta ,b\tan \theta ) and Q(asecϕ,btanϕ)Q(a\sec \phi ,b\tan \phi ), where θ+ϕ=π2\theta + \phi = \dfrac{\pi }{2}, be two points on hyperbola x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1. If (h,k) is the point of intersection of the normal at P &Q;, then k is equal to_______
A) [a2+b2a]\left[ {\dfrac{{{a^2} + {b^2}}}{a}} \right]
B) [a2+b2a] - \left[ {\dfrac{{{a^2} + {b^2}}}{a}} \right]
C) a2+b2b\dfrac{{{a^2} + {b^2}}}{{ - b}}
D) [a2+b2b] - \left[ {\dfrac{{{a^2} + {b^2}}}{b}} \right]

Explanation

Solution

This question is based on the chapter conic sections, Hyperbola. The hyperbola with foci on the x- axis can be represented as x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1. In a hyperbola x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1, the length of latus rectum is given by 2b2a\dfrac{{2{b^{^2}}}}{a}.

Complete step-by-step solution:
According to the question, firstly, we will obtain the slope of normal as x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1 at (asecθ,btanθ)(a\sec \theta ,b\tan \theta ).
Now, we will differentiate it with respect to xx, and we get:
2xa22yb2×dydx=0\Rightarrow \dfrac{{2x}}{{{a^2}}} - \dfrac{{2y}}{{{b^2}}} \times \dfrac{{dy}}{{dx}} = 0
dydx=b2a2×xy\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{x}{y}
Slope for normal at point (asecθ,btanθ)(a\sec \theta ,b\tan \theta ) will be:
a2btanθb2asecθ=absinθ\Rightarrow - \dfrac{{{a^2}b\tan \theta }}{{{b^2}a\sec \theta }} = - \dfrac{a}{b}\sin \theta
Therefore, equation of normal at (asecθ,btanθ)(a\sec \theta ,b\tan \theta ) is:
ybtanθ=absinθ(xasecθ)\Rightarrow y - b\tan \theta = - \dfrac{a}{b}\sin \theta \left( {x - a\sec \theta } \right)
(asinθ)x+by=(a2+b2)tanθ\Rightarrow \left( {a\sin \theta } \right)x + by = \left( {{a^2} + {b^2}} \right)\tan \theta
ax+bycosecθ=(a2+b2)secθequation1\Rightarrow ax + by\cos ec\theta = \left( {{a^2} + {b^2}} \right)\sec \theta \,\,\,\,\,\,\,\, ----- equation\,1
Similarly, the equation of normal to x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1 at: (asecϕ,btanϕ)\left( {a\sec \phi ,b\tan \phi } \right) is
ax+bycosecφ=(a2+b2)secφequation2ax+by\cos ec\varphi = \left( {{a^2} + {b^2}} \right){\sec \varphi}\,\,\,\,\,\,\,\,\, ----- equation\,2
On subtracting the equation 2 from the equation 1, we get:
b(cosecθcosecϕ)y=(a2+b2)(secθsecφ)\Rightarrow b\left( {\cos ec\theta - \cos ec\phi } \right)y = \left( {{a^2} + {b^2}} \right)\left( {\sec \theta - \sec \varphi } \right)
By Calculating ‘y’, we get:
y=a2+b2b.secθsecφcosecθcosecϕ\Rightarrow y = \dfrac{{{a^2} + {b^2}}}{b}.\dfrac{{\sec \theta - \sec \varphi }}{{\cos ec\theta - \cos ec\phi }}
But we know that:
y=a2+b2b.secθsec(π2θ)cosecθcosec(π2θ)\Rightarrow y = \dfrac{{{a^2} + {b^2}}}{b}.\dfrac{{\sec \theta - \sec \left( {\dfrac{\pi }{2} - \theta } \right)}}{{\cos ec\theta - \cos ec\left( {\dfrac{\pi }{2} - \theta } \right)}}
But as per the question:
[ϕ+θ=π2]\left[ {\because \phi + \theta = \dfrac{\pi }{2}} \right]
So, we get:
secθcosecθsecθsecθ=1\dfrac{{\sec \theta - \cos ec\theta }}{{\sec \theta - \sec \theta }} = - 1
Thus, we get thaty=(a2+b2b)y = - \left( {\dfrac{{{a^2} + {b^2}}}{b}} \right)
That is k=(a2+b2b)k = - \left( {\dfrac{{{a^2} + {b^2}}}{b}} \right)
Therefore, we get the final result, and it is clear that Option D is the right option.

Note: Hyperbola is the difference of distances of a set of points in a plane from two fixed points is constant. Any points on a hyperbola should always be compared with the standard equation of a hyperbola.