Solveeit Logo

Question

Question: Let we have a function \[f\left( x \right) = \sqrt {\cot \left( {5 + 3x} \right)\left( {\cot \left( ...

Let we have a function f(x)=cot(5+3x)(cot(5)+cot(3x))cot3x+1f\left( x \right) = \sqrt {\cot \left( {5 + 3x} \right)\left( {\cot \left( 5 \right) + \cot \left( {3x} \right)} \right) - \sqrt {\cot 3x} + 1} , find the domain of the function.
A). R - \left\\{ {\dfrac{{n\pi }}{3}} \right\\},n \in I
B). (2n+1)π6,nI\left( {2n + 1} \right)\dfrac{\pi }{6},n \in I
C). R - \left\\{ {\dfrac{{n\pi }}{3},\dfrac{{n\pi - 5}}{3}} \right\\},n \in I
D). R - \left\\{ {\dfrac{{n\pi - 5}}{3}} \right\\},n \in I

Explanation

Solution

Here, in the question, we are given a function in the form of f(x)f\left( x \right) and asked to find the domain of the function. The domain refers to the set of all possible values of xx for which a function is defined. To find the domain, we will first simplify the given function to a possible extent and then check for the possible input values of xx to get the desired result.
Formula used:
cot(A+B)=cotAcotB1cotB+cotA\cot \left( {A + B} \right) = \dfrac{{\cot A\cot B - 1}}{{\cot B + \cot A}}

Complete step-by-step solution:
Given, f(x)=cot(5+3x)(cot(5)+cot(3x))cot3x+1f\left( x \right) = \sqrt {\cot \left( {5 + 3x} \right)\left( {\cot \left( 5 \right) + \cot \left( {3x} \right)} \right) - \sqrt {\cot 3x} + 1}
To simplify, we will use trigonometric identity, cot(A+B)=cotAcotB1cotB+cotA\cot \left( {A + B} \right) = \dfrac{{\cot A\cot B - 1}}{{\cot B + \cot A}}
Therefore, f(x)=cot5cot3x1cot3x+cot5(cot(5)+cot(3x))cot3x+1f\left( x \right) = \sqrt {\dfrac{{\cot 5\cot 3x - 1}}{{\cot 3x + \cot 5}}\left( {\cot \left( 5 \right) + \cot \left( {3x} \right)} \right) - \sqrt {\cot 3x} + 1}
Now, we can cancel the similar terms in numerator and denominator,
f(x)=cot5cot3x1cot3x+1\therefore f\left( x \right) = \sqrt {\cot 5\cot 3x - 1 - \sqrt {\cot 3x} + 1}
Adding 11 and 1 - 1, we get,
f(x)=cot5cot3xcot3x\therefore f\left( x \right) = \sqrt {\cot 5\cot 3x - \sqrt {\cot 3x} }
To find the domain, Put f(x)=0f\left( x \right) = 0
\therefore \sqrt {\cot 5\cot 3x - \sqrt {\cot 3x} } = 0$$$$$$ Squaring both sides, we get, \cot 5\cot 3x - \sqrt {\cot 3x} = 0Now,theaboveequationcannotbesimplifiedfurther.Butitisclearlyvisiblethat Now, the above equation cannot be simplified further. But it is clearly visible thatxistheonlyindependentvariableandis the only independent variable and3xistheonlyangleleftwithitscotangent.Now,wehavetofindthosevaluesforis the only angle left with its cotangent. Now, we have to find those values forxsuchthatsuch that\cot 3xisdefined.Or,inotherwords,domainwillbealltherealnumbersexceptforthenumberswhereis defined. Or, in other words, domain will be all the real numbers except for the numbers where\cot 3xisundefined.Andweknow,thecotangentofanyangleisundefinedatis undefined. And we know, the cotangent of any angle is undefined atn\pi ,n \in I.Itmeans. It means 3xshouldnotbeequaltoshould not be equal ton\pi ,n \in I.Hence,thedomainfor. Hence, the domain for f\left( x \right) = \sqrt {\cot \left( {5 + 3x} \right)\left( {\cot \left( 5 \right) + \cot \left( {3x} \right)} \right) - \sqrt {\cot 3x} + 1} isisR - \left\{ {\dfrac{{n\pi }}{3}} \right\},n \in IHencethecorrectoptionisA. **Hence the correct option is A.R - \left\{ {\dfrac{{n\pi }}{3}} \right\},n \in I$$ is the correct option.**

Note: Generally, we determine the domain of the function by looking for those values of the independent variable (usuallyxx) which we are permitted to use. There are two key-points which should be kept in mind while finding the domain of any function: (i) There should not be negative values under a square root sign, and, (ii) There should not be zero in the denominator of the function.