Question
Question: Let we have a function \[f\left( x \right) = \sqrt {\cot \left( {5 + 3x} \right)\left( {\cot \left( ...
Let we have a function f(x)=cot(5+3x)(cot(5)+cot(3x))−cot3x+1, find the domain of the function.
A). R - \left\\{ {\dfrac{{n\pi }}{3}} \right\\},n \in I
B). (2n+1)6π,n∈I
C). R - \left\\{ {\dfrac{{n\pi }}{3},\dfrac{{n\pi - 5}}{3}} \right\\},n \in I
D). R - \left\\{ {\dfrac{{n\pi - 5}}{3}} \right\\},n \in I
Solution
Here, in the question, we are given a function in the form of f(x) and asked to find the domain of the function. The domain refers to the set of all possible values of x for which a function is defined. To find the domain, we will first simplify the given function to a possible extent and then check for the possible input values of x to get the desired result.
Formula used:
cot(A+B)=cotB+cotAcotAcotB−1
Complete step-by-step solution:
Given, f(x)=cot(5+3x)(cot(5)+cot(3x))−cot3x+1
To simplify, we will use trigonometric identity, cot(A+B)=cotB+cotAcotAcotB−1
Therefore, f(x)=cot3x+cot5cot5cot3x−1(cot(5)+cot(3x))−cot3x+1
Now, we can cancel the similar terms in numerator and denominator,
∴f(x)=cot5cot3x−1−cot3x+1
Adding 1 and −1, we get,
∴f(x)=cot5cot3x−cot3x
To find the domain, Put f(x)=0
\therefore \sqrt {\cot 5\cot 3x - \sqrt {\cot 3x} } = 0$$$$$$
Squaring both sides, we get,
\cot 5\cot 3x - \sqrt {\cot 3x} = 0Now,theaboveequationcannotbesimplifiedfurther.Butitisclearlyvisiblethatxistheonlyindependentvariableand3xistheonlyangleleftwithitscotangent.Now,wehavetofindthosevaluesforxsuchthat\cot 3xisdefined.Or,inotherwords,domainwillbealltherealnumbersexceptforthenumberswhere\cot 3xisundefined.Andweknow,thecotangentofanyangleisundefinedatn\pi ,n \in I.Itmeans3xshouldnotbeequalton\pi ,n \in I.Hence,thedomainforf\left( x \right) = \sqrt {\cot \left( {5 + 3x} \right)\left( {\cot \left( 5 \right) + \cot \left( {3x} \right)} \right) - \sqrt {\cot 3x} + 1} isR - \left\{ {\dfrac{{n\pi }}{3}} \right\},n \in I∗∗HencethecorrectoptionisA.R - \left\{ {\dfrac{{n\pi }}{3}} \right\},n \in I$$ is the correct option.**
Note: Generally, we determine the domain of the function by looking for those values of the independent variable (usuallyx) which we are permitted to use. There are two key-points which should be kept in mind while finding the domain of any function: (i) There should not be negative values under a square root sign, and, (ii) There should not be zero in the denominator of the function.