Solveeit Logo

Question

Question: Let we have a function as \(f\left( x \right)=\left\\{ \begin{matrix} {{x}^{2}} & \text{ x is an ...

Let we have a function as f\left( x \right)=\left\\{ \begin{matrix} {{x}^{2}} & \text{ x is an integer} \\\ \dfrac{K\left( {{x}^{2}}-4 \right)}{2-x} & \text{ otherwise} \\\ \end{matrix} \right. then limx2f(x)\displaystyle \lim_{x \to 2}f\left( x \right)
A. exists only when K=1K=-1
B. exists for every real K
C. exists for every real K except K=1K=1
D. does not exist

Explanation

Solution

We first try to find the function and approaching value of the variable x2x \to 2. Then we find the definition of limit and how it applies for the function to find the limit value. The limit only exists when the left-hand and right-hand each limit gives equal value. The mathematical form being limxa+f(x)=limxaf(x)=f(a)\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=f\left( a \right). Using the formula, we find the value of K.

Complete step-by-step solution:
We assume the limit of the function f\left( x \right)=\left\\{ \begin{matrix} {{x}^{2}} & \text{ x is an integer} \\\ \dfrac{K\left( {{x}^{2}}-4 \right)}{2-x} & \text{ otherwise} \\\ \end{matrix} \right. exists at x=2x=2.
From the theorem we can tell that limit exists only when limxa+f(x)=limxaf(x)=f(a)\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=f\left( a \right).
For our given limit the value of variable x2x \to 2. This means the value can be approaching from the both sides of the point of 2. We can break it into three parts of 2+,2,2{{2}^{+}},2,{{2}^{-}}.
2+{{2}^{+}} represents that the value is approaching from the right-side or greater side of the point and 2{{2}^{-}} represents that the value is approaching from the left-side or lesser side of the point. There is also the fixed point of 2.
Now the limit value will exist only when limx2+f(x)=limx2f(x)=f(2)\displaystyle \lim_{x \to {{2}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{2}^{-}}}f\left( x \right)=f\left( 2 \right).
limx2+f(x)=[K(x24)2x]x=2=[K(x+2)]x=2=K(2+2)=4K\displaystyle \lim_{x \to {{2}^{+}}}f\left( x \right)={{\left[ \dfrac{K\left( {{x}^{2}}-4 \right)}{2-x} \right]}_{x=2}}={{\left[ -K\left( x+2 \right) \right]}_{x=2}}=-K\left( 2+2 \right)=-4K
limx2f(x)=[K(x24)2x]x=2=[K(x+2)]x=2=K(2+2)=4K\displaystyle \lim_{x \to {{2}^{-}}}f\left( x \right)={{\left[ \dfrac{K\left( {{x}^{2}}-4 \right)}{2-x} \right]}_{x=2}}={{\left[ -K\left( x+2 \right) \right]}_{x=2}}=-K\left( 2+2 \right)=-4K
f(2)=22=4f\left( 2 \right)={{2}^{2}}=4
Therefore, 4K=4-4K=4 if the limit exists which gives that K=44=1K=\dfrac{4}{-4}=-1.
The correct option is A.

Note: The precise definition of a limit is something we use as a proof for the existence of a limit. When we’re evaluating a limit, we’re looking at the function as it approaches a specific point. we approach a particular value of x, the function itself gets closer and closer to a particular value.