Solveeit Logo

Question

Question: Let we are given a series as \[{{a}_{1}},{{a}_{2}},{{a}_{3}},....{{a}_{10}}\] be in GP with \({{a}_{...

Let we are given a series as a1,a2,a3,....a10{{a}_{1}},{{a}_{2}},{{a}_{3}},....{{a}_{10}} be in GP with a1>0{{a}_{1}}>0 for I = 1, 2, …..10 and S be set of the pairs
(r, k) such that r,kNr,k\in N (The set of natural numbers) for which
logea1ra2klogea2ra3klogea3ra4k logea4ra5klogea5ra6klogea6ra7k logea7ra8klogea8ra9klogea9ra10k =0\left| \begin{matrix} {{\log }_{e}}{{a}_{1}}^{r}{{a}_{2}}^{k} & {{\log }_{e}}{{a}_{2}}^{r}{{a}_{3}}^{k} & {{\log }_{e}}{{a}_{3}}^{r}{{a}_{4}}^{k} \\\ {{\log }_{e}}{{a}_{4}}^{r}{{a}_{5}}^{k} & {{\log }_{e}}{{a}_{5}}^{r}{{a}_{6}}^{k} & {{\log }_{e}}{{a}_{6}}^{r}{{a}_{7}}^{k} \\\ {{\log }_{e}}{{a}_{7}}^{r}{{a}_{8}}^{k} & {{\log }_{e}}{{a}_{8}}^{r}{{a}_{9}}^{k} & {{\log }_{e}}{{a}_{9}}^{r}{{a}_{10}}^{k} \\\ \end{matrix} \right|=0
a) Infinitely many b) 4 c) 10 d) 2 \begin{aligned} & a)\text{ Infinitely many} \\\ & \text{b) 4} \\\ & \text{c) 10} \\\ & \text{d) 2} \\\ \end{aligned}

Explanation

Solution

Now to solve this consider first consider the given GP. Now since the given numbers a1,a2,a3,....a10{{a}_{1}},{{a}_{2}},{{a}_{3}},....{{a}_{10}} are in GP, we have a2a1=a3a2=....=a10a9\dfrac{{{a}_{2}}}{{{a}_{1}}}=\dfrac{{{a}_{3}}}{{{a}_{2}}}=....=\dfrac{{{a}_{10}}}{{{a}_{9}}} . Since the ratio of two consecutive terms taken in order in GP are the same. Now consider the given determinant. We will use column transformation C1C1C2{{C}_{1}}\to {{C}_{1}}-{{C}_{2}} and C2=C2C3{{C}_{2}}={{C}_{2}}-{{C}_{3}} in the given determinant. Now we will use the properties of log which says logalogb=log(ab)\log a-\log b=\log \left( \dfrac{a}{b} \right) . Now further simplifying the determinant we will make use of the equation a2a1=a3a2=....=a10a9\dfrac{{{a}_{2}}}{{{a}_{1}}}=\dfrac{{{a}_{3}}}{{{a}_{2}}}=....=\dfrac{{{a}_{10}}}{{{a}_{9}}} and hence get a simplified determinant. Now we can easily find the answer.

Complete step-by-step solution
Now first let us consider the given terms.
The terms a1,a2,a3,....a10{{a}_{1}},{{a}_{2}},{{a}_{3}},....{{a}_{10}} are given to be in GP. This means the ratio of consecutive terms taken in order is the same. Hence we can write.
a2a1=a3a2=....=a10a9\dfrac{{{a}_{2}}}{{{a}_{1}}}=\dfrac{{{a}_{3}}}{{{a}_{2}}}=....=\dfrac{{{a}_{10}}}{{{a}_{9}}} . Let us call this common ratio as d.
Hence we get, a2a1=a3a2=....=a10a9=d\dfrac{{{a}_{2}}}{{{a}_{1}}}=\dfrac{{{a}_{3}}}{{{a}_{2}}}=....=\dfrac{{{a}_{10}}}{{{a}_{9}}}=d
Now from the above equation we can say that an=dan1....................(1){{a}_{n}}=d{{a}_{n-1}}....................\left( 1 \right)
Now consider the given determinant. logea1ra2klogea2ra3klogea3ra4k logea4ra5klogea5ra6klogea6ra7k logea7ra8klogea8ra9klogea9ra10k \left| \begin{matrix} {{\log }_{e}}{{a}_{1}}^{r}{{a}_{2}}^{k} & {{\log }_{e}}{{a}_{2}}^{r}{{a}_{3}}^{k} & {{\log }_{e}}{{a}_{3}}^{r}{{a}_{4}}^{k} \\\ {{\log }_{e}}{{a}_{4}}^{r}{{a}_{5}}^{k} & {{\log }_{e}}{{a}_{5}}^{r}{{a}_{6}}^{k} & {{\log }_{e}}{{a}_{6}}^{r}{{a}_{7}}^{k} \\\ {{\log }_{e}}{{a}_{7}}^{r}{{a}_{8}}^{k} & {{\log }_{e}}{{a}_{8}}^{r}{{a}_{9}}^{k} & {{\log }_{e}}{{a}_{9}}^{r}{{a}_{10}}^{k} \\\ \end{matrix} \right|
Now to this determinant first we will apply column transformation C1C1C2{{C}_{1}}\to {{C}_{1}}-{{C}_{2}}
Hence we get logea1ra2klogea2ra3klogea2ra3klogea3ra4k logea4ra5klogea5ra6klogea5ra6klogea6ra7k logea7ra8klogea8ra9klogea8ra9klogea9ra10k \left| \begin{matrix} {{\log }_{e}}{{a}_{1}}^{r}{{a}_{2}}^{k}-{{\log }_{e}}{{a}_{2}}^{r}{{a}_{3}}^{k} & {{\log }_{e}}{{a}_{2}}^{r}{{a}_{3}}^{k} & {{\log }_{e}}{{a}_{3}}^{r}{{a}_{4}}^{k} \\\ {{\log }_{e}}{{a}_{4}}^{r}{{a}_{5}}^{k}-{{\log }_{e}}{{a}_{5}}^{r}{{a}_{6}}^{k} & {{\log }_{e}}{{a}_{5}}^{r}{{a}_{6}}^{k} & {{\log }_{e}}{{a}_{6}}^{r}{{a}_{7}}^{k} \\\ {{\log }_{e}}{{a}_{7}}^{r}{{a}_{8}}^{k}-{{\log }_{e}}{{a}_{8}}^{r}{{a}_{9}}^{k} & {{\log }_{e}}{{a}_{8}}^{r}{{a}_{9}}^{k} & {{\log }_{e}}{{a}_{9}}^{r}{{a}_{10}}^{k} \\\ \end{matrix} \right|
Now again we will use a column transformation, C2=C2C3{{C}_{2}}={{C}_{2}}-{{C}_{3}} and hence we will get.
logea1ra2klogea2ra3klogea2ra3klogea3ra4klogea3ra4k logea4ra5klogea5ra6klogea5ra6klogea6ra7klogea6ra7k logea7ra8klogea8ra9klogea8ra9klogea9ra10klogea9ra10k \left| \begin{matrix} {{\log }_{e}}{{a}_{1}}^{r}{{a}_{2}}^{k}-{{\log }_{e}}{{a}_{2}}^{r}{{a}_{3}}^{k} & {{\log }_{e}}{{a}_{2}}^{r}{{a}_{3}}^{k}-{{\log }_{e}}{{a}_{3}}^{r}{{a}_{4}}^{k} & {{\log }_{e}}{{a}_{3}}^{r}{{a}_{4}}^{k} \\\ {{\log }_{e}}{{a}_{4}}^{r}{{a}_{5}}^{k}-{{\log }_{e}}{{a}_{5}}^{r}{{a}_{6}}^{k} & {{\log }_{e}}{{a}_{5}}^{r}{{a}_{6}}^{k}-{{\log }_{e}}{{a}_{6}}^{r}{{a}_{7}}^{k} & {{\log }_{e}}{{a}_{6}}^{r}{{a}_{7}}^{k} \\\ {{\log }_{e}}{{a}_{7}}^{r}{{a}_{8}}^{k}-{{\log }_{e}}{{a}_{8}}^{r}{{a}_{9}}^{k} & {{\log }_{e}}{{a}_{8}}^{r}{{a}_{9}}^{k}-{{\log }_{e}}{{a}_{9}}^{r}{{a}_{10}}^{k} & {{\log }_{e}}{{a}_{9}}^{r}{{a}_{10}}^{k} \\\ \end{matrix} \right|
Now we know that logalogb=log(ab)\log a-\log b=\log \left( \dfrac{a}{b} \right) using this property we get.
logea1ra2ka2ra3klogea2ra3ka3ra4klogea3ra4k logea4ra5ka5ra6klogea5ra6ka6ra7klogea6ra7k logea7ra8ka8ra9klogea8ra9ka9ra10klogea9ra10k \left| \begin{matrix} {{\log }_{e}}\dfrac{{{a}_{1}}^{r}{{a}_{2}}^{k}}{{{a}_{2}}^{r}{{a}_{3}}^{k}} & {{\log }_{e}}\dfrac{{{a}_{2}}^{r}{{a}_{3}}^{k}}{{{a}_{3}}^{r}{{a}_{4}}^{k}} & {{\log }_{e}}{{a}_{3}}^{r}{{a}_{4}}^{k} \\\ {{\log }_{e}}\dfrac{{{a}_{4}}^{r}{{a}_{5}}^{k}}{{{a}_{5}}^{r}{{a}_{6}}^{k}} & {{\log }_{e}}\dfrac{{{a}_{5}}^{r}{{a}_{6}}^{k}}{{{a}_{6}}^{r}{{a}_{7}}^{k}} & {{\log }_{e}}{{a}_{6}}^{r}{{a}_{7}}^{k} \\\ {{\log }_{e}}\dfrac{{{a}_{7}}^{r}{{a}_{8}}^{k}}{{{a}_{8}}^{r}{{a}_{9}}^{k}} & {{\log }_{e}}\dfrac{{{a}_{8}}^{r}{{a}_{9}}^{k}}{{{a}_{9}}^{r}{{a}_{10}}^{k}} & {{\log }_{e}}{{a}_{9}}^{r}{{a}_{10}}^{k} \\\ \end{matrix} \right|
Now from equation (1) we get.
logea1r(da1)ka2r(da2)klogea2r(da2)ka3r(da3)klogea3ra4k logea4r(da4)ka5r(da5)klogea5r(da5)ka6r(da6)klogea6ra7k logea7r(da7)ka8r(da8)klogea8r(da8)ka9r(da9)klogea9ra10k \left| \begin{matrix} {{\log }_{e}}\dfrac{{{a}_{1}}^{r}{{\left( d{{a}_{1}} \right)}^{k}}}{{{a}_{2}}^{r}{{\left( d{{a}_{2}} \right)}^{k}}} & {{\log }_{e}}\dfrac{{{a}_{2}}^{r}{{\left( d{{a}_{2}} \right)}^{k}}}{{{a}_{3}}^{r}{{\left( d{{a}_{3}} \right)}^{k}}} & {{\log }_{e}}{{a}_{3}}^{r}{{a}_{4}}^{k} \\\ {{\log }_{e}}\dfrac{{{a}_{4}}^{r}{{\left( d{{a}_{4}} \right)}^{k}}}{{{a}_{5}}^{r}{{\left( d{{a}_{5}} \right)}^{k}}} & {{\log }_{e}}\dfrac{{{a}_{5}}^{r}{{\left( d{{a}_{5}} \right)}^{k}}}{{{a}_{6}}^{r}{{\left( d{{a}_{6}} \right)}^{k}}} & {{\log }_{e}}{{a}_{6}}^{r}{{a}_{7}}^{k} \\\ {{\log }_{e}}\dfrac{{{a}_{7}}^{r}{{\left( d{{a}_{7}} \right)}^{k}}}{{{a}_{8}}^{r}{{\left( d{{a}_{8}} \right)}^{k}}} & {{\log }_{e}}\dfrac{{{a}_{8}}^{r}{{\left( d{{a}_{8}} \right)}^{k}}}{{{a}_{9}}^{r}{{\left( d{{a}_{9}} \right)}^{k}}} & {{\log }_{e}}{{a}_{9}}^{r}{{a}_{10}}^{k} \\\ \end{matrix} \right|
Now simplifying by we get
logea1r+ka2r+klogea2r+ka3r+klogea3ra4k logea4r+ka5r+klogea5r+ka6r+klogea6ra7k logea7r+ka8r+klogea8r+ka9r+klogea9ra10k \left| \begin{matrix} {{\log }_{e}}\dfrac{{{a}_{1}}^{r+k}}{{{a}_{2}}^{r+k}} & {{\log }_{e}}\dfrac{{{a}_{2}}^{r+k}}{{{a}_{3}}^{r+k}} & {{\log }_{e}}{{a}_{3}}^{r}{{a}_{4}}^{k} \\\ {{\log }_{e}}\dfrac{{{a}_{4}}^{r+k}}{{{a}_{5}}^{r+k}} & {{\log }_{e}}\dfrac{{{a}_{5}}^{r+k}}{{{a}_{6}}^{r+k}} & {{\log }_{e}}{{a}_{6}}^{r}{{a}_{7}}^{k} \\\ {{\log }_{e}}\dfrac{{{a}_{7}}^{r+k}}{{{a}_{8}}^{r+k}} & {{\log }_{e}}\dfrac{{{a}_{8}}^{r+k}}{{{a}_{9}}^{r+k}} & {{\log }_{e}}{{a}_{9}}^{r}{{a}_{10}}^{k} \\\ \end{matrix} \right|
Now we know that a2a1=a3a2=....=a10a9=d\dfrac{{{a}_{2}}}{{{a}_{1}}}=\dfrac{{{a}_{3}}}{{{a}_{2}}}=....=\dfrac{{{a}_{10}}}{{{a}_{9}}}=d hence we get.

{{\log }_{e}}{{\left( \dfrac{1}{d} \right)}^{r+k}} & {{\log }_{e}}{{\left( \dfrac{1}{d} \right)}^{r+k}} & {{\log }_{e}}{{a}_{3}}^{r}{{a}_{4}}^{k} \\\ {{\log }_{e}}{{\left( \dfrac{1}{d} \right)}^{r+k}} & {{\log }_{e}}{{\left( \dfrac{1}{d} \right)}^{r+k}} & {{\log }_{e}}{{a}_{6}}^{r}{{a}_{7}}^{k} \\\ {{\log }_{e}}{{\left( \dfrac{1}{d} \right)}^{r+k}} & {{\log }_{e}}{{\left( \dfrac{1}{d} \right)}^{r+k}} & {{\log }_{e}}{{a}_{9}}^{r}{{a}_{10}}^{k} \\\ \end{matrix} \right|$$ Now we know that if two rows or two columns of the determinant are the same then the value of the determinant is 0. Hence we get $$\left| \begin{matrix} {{\log }_{e}}{{\left( \dfrac{1}{d} \right)}^{r+k}} & {{\log }_{e}}{{\left( \dfrac{1}{d} \right)}^{r+k}} & {{\log }_{e}}{{a}_{3}}^{r}{{a}_{4}}^{k} \\\ {{\log }_{e}}{{\left( \dfrac{1}{d} \right)}^{r+k}} & {{\log }_{e}}{{\left( \dfrac{1}{d} \right)}^{r+k}} & {{\log }_{e}}{{a}_{6}}^{r}{{a}_{7}}^{k} \\\ {{\log }_{e}}{{\left( \dfrac{1}{d} \right)}^{r+k}} & {{\log }_{e}}{{\left( \dfrac{1}{d} \right)}^{r+k}} & {{\log }_{e}}{{a}_{9}}^{r}{{a}_{10}}^{k} \\\ \end{matrix} \right|=0$$ . This means nothing but $\left| \begin{matrix} {{\log }_{e}}{{a}_{1}}^{r}{{a}_{2}}^{k} & {{\log }_{e}}{{a}_{2}}^{r}{{a}_{3}}^{k} & {{\log }_{e}}{{a}_{3}}^{r}{{a}_{4}}^{k} \\\ {{\log }_{e}}{{a}_{4}}^{r}{{a}_{5}}^{k} & {{\log }_{e}}{{a}_{5}}^{r}{{a}_{6}}^{k} & {{\log }_{e}}{{a}_{6}}^{r}{{a}_{7}}^{k} \\\ {{\log }_{e}}{{a}_{7}}^{r}{{a}_{8}}^{k} & {{\log }_{e}}{{a}_{8}}^{r}{{a}_{9}}^{k} & {{\log }_{e}}{{a}_{9}}^{r}{{a}_{10}}^{k} \\\ \end{matrix} \right|=0$ Now this is always true. Which means the value of determinant is 0 independent of our choice of r and k. Hence we can choose infinitely many r and k. Now since we have S is a set of (r, k) such that $r,k\in N$ we can say that there are infinitely many elements in S. **Hence, option (a) is the correct option.** **Note:** Note that here by looking we get an idea that the determinant can be reduced to a simpler form. Here we can also use row transformation or some other column transformation to solve. Just make sure we get successive terms together to simplify further. Also, note that the value of the determinant is 0 always which was the given equation and hence we have an infinite solution and not 0 solutions. Also if we do not want to use the result that the value of the determinant is 0 when two rows and columns are the same we can use one more transformation in which we subtract the same rows or columns obtained, Hence we get one row or column as 0 which means the value of the determinant is 0.