Question
Question: Let w (Im w \[ \ne 0\]) be a complex number. Then the set of all complex number z satisfying the equ...
Let w (Im w =0) be a complex number. Then the set of all complex number z satisfying the equation w−wˉz=k(1−z) , for some real number k, is:
A) \left\\{ {z:\left| z \right| = 1} \right\\}
B) \left\\{ {z:z = \bar z} \right\\}
C) \left\\{ {z:z \ne 1} \right\\}
D) \left\\{ {z:\left| z \right| = 1,z \ne 1} \right\\}
Solution
A number of the form (a+ib) , where a and b are real numbers, is called a complex number, a is called the real part, and b called the imaginary part.
Here, i is called iota and equals −1 .
Imaginary value (or part) (or number) is the value that combines with iota, i.
The conjugate of the complex number z=a+ib , denoted by zˉ , is given by zˉ=a−ib.
In complex equations, generally z=x+iy is a complex variable.
Roots of a complex equation in a variable z, is the value of z which satisfies the complex equation.
Complete step-by-step answer:
Step 1: Substitute complex numbers in the given equation.
Let complex number, w=a+ib, provided b=0
Thus, its conjugate, wˉ=a−ib
w−wˉ=a+ib−(a−ib) ⇒w−wˉ=a+ib−a+ib=2ib
But given that b=0
∴w−wˉ=0 …… (1)
We know, z=x+iy
Given the complex equation: w−wˉz=k(1−z)
Here, k is a real number.
Substituting the values of w,wˉ,z in given equation.
a+ib−[(a−ib)(x+iy)]=k(1−(x+iy))
Step 2: Further simplifying the equation:
⇒a+ib−[ax+iay−ibx−i2by]=k(1−x−iy)
We know, i=1
Therefore, put i2=−1
Combining imaginary terms and real terms:
⇒a−ax−by+i(b−ay+bx)=(k−kx)−iky
When two complex numbers are equal, their respective real parts and imaginary parts are equal. For example:
s+it=2+i(x−3) ⇒s=2;t=(x−3)
Therefore, a−ax−by=k−kx
$$
\Rightarrow a - ax - by = k\left( {1 - x} \right) \\
\Rightarrow k = \dfrac{{a - ax - by}}{{\left( {1 - x} \right)}} \\
\Rightarrow - y\left( {a - ax - by} \right) = \left( {1 - x} \right)\left( {b - ay + bx} \right) \\
\Rightarrow - ay + axy + b{y^2} = b - bx - ay + axy + bx - b{x^2} \\
\Rightarrow {\text{ }}b{y^2} = b - b{x^2} \\
\Rightarrow {\text{ }}b{y^2} + b{x^2} = b \\
\Rightarrow {\text{ }}{x^2} + {y^2} = 1 \\
\Rightarrow \left( {w - k} \right)\left( {\bar w - k} \right) - {\left| z \right|^2}\left( {\bar w - k} \right)\left( {w - k} \right) = 0 \\
\Rightarrow \left[ {\left( {w - k} \right)\left( {\bar w - k} \right)} \right]\left( {1 - {{\left| z \right|}^2}} \right) = 0 \\
\left( {1 - {{\left| z \right|}^2}} \right) = 0 \\
\Rightarrow {\left| z \right|^2} = 1 \\
\Rightarrow \left| z \right| = 1 \\
\left[ {\left( {w - k} \right)\left( {\bar w - k} \right)} \right] = 0 \\
\Rightarrow \left( {w - k} \right)\left( {\overline {w - k} } \right) = 0 \\
\Rightarrow {\left| {w - k} \right|^2} = 0 \\
\Rightarrow w - k = 0 \\
\Rightarrow w = k \\