Solveeit Logo

Question

Question: Let w (Im w \[ \ne 0\]) be a complex number. Then the set of all complex number z satisfying the equ...

Let w (Im w 0 \ne 0) be a complex number. Then the set of all complex number z satisfying the equation wwˉz=k(1z)w - \bar wz = k\left( {1 - z} \right) , for some real number k, is:
A) \left\\{ {z:\left| z \right| = 1} \right\\}
B) \left\\{ {z:z = \bar z} \right\\}
C) \left\\{ {z:z \ne 1} \right\\}
D) \left\\{ {z:\left| z \right| = 1,z \ne 1} \right\\}

Explanation

Solution

A number of the form (a+ib)\left( {a + ib} \right) , where a and ba{\text{ and }}b are real numbers, is called a complex number, aa is called the real part, and bb called the imaginary part.
Here, ii is called iota and equals 1\sqrt { - 1} .
Imaginary value (or part) (or number) is the value that combines with iota, ii.
The conjugate of the complex number z=a+ibz = a + ib , denoted by zˉ\bar z , is given by zˉ=aib\bar z = a - ib.
In complex equations, generally z=x+iyz = x + iy is a complex variable.
Roots of a complex equation in a variable zz, is the value of zz which satisfies the complex equation.

Complete step-by-step answer:
Step 1: Substitute complex numbers in the given equation.
Let complex number, w=a+ibw = a + ib, provided b0b \ne 0
Thus, its conjugate, wˉ=aib\bar w = a - ib
wwˉ=a+ib(aib) wwˉ=a+iba+ib=2ib  w - \bar w = a + ib - \left( {a - ib} \right) \\\ \Rightarrow w - \bar w = a + ib - a + ib = 2ib \\\
But given that b0b \ne 0
wwˉ0\therefore w - \bar w \ne 0 …… (1)
We know, z=x+iyz = x + iy
Given the complex equation: wwˉz=k(1z)w - \bar wz = k\left( {1 - z} \right)
Here, k is a real number.
Substituting the values of w,wˉ,zw,\bar w,z in given equation.
a+ib[(aib)(x+iy)]=k(1(x+iy))a + ib - \left[ {\left( {a - ib} \right)\left( {x + iy} \right)} \right] = k\left( {1 - \left( {x + iy} \right)} \right)

Step 2: Further simplifying the equation:
a+ib[ax+iayibxi2by]=k(1xiy)\Rightarrow a + ib - \left[ {ax + iay - ibx - {i^2}by} \right] = k\left( {1 - x - iy} \right)
We know, i=1i = \sqrt 1
Therefore, put i2=1{i^2} = - 1

a+ib[ax+iayibx+by]=k(1xiy) a+ibaxiay+ibxby=kkxiky  \Rightarrow a + ib - \left[ {ax + iay - ibx + by} \right] = k\left( {1 - x - iy} \right) \\\ \Rightarrow a + ib - ax - iay + ibx - by = k - kx - iky \\\

Combining imaginary terms and real terms:
aaxby+i(bay+bx)=(kkx)iky\Rightarrow a - ax - by + i\left( {b - ay + bx} \right) = \left( {k - kx} \right) - iky
When two complex numbers are equal, their respective real parts and imaginary parts are equal. For example:
s+it=2+i(x3) s=2;t=(x3)  s + it = 2 + i(x - 3) \\\ \Rightarrow s = 2;t = \left( {x - 3} \right) \\\
Therefore, aaxby=kkxa - ax - by = k - kx
$$
\Rightarrow a - ax - by = k\left( {1 - x} \right) \\
\Rightarrow k = \dfrac{{a - ax - by}}{{\left( {1 - x} \right)}} \\

And $$b - ay + bx = - ky$$ $$ \Rightarrow k = \dfrac{{b - ay + bx}}{{ - y}}$$ …… (3) From equation (3) and (4) $$ \Rightarrow \dfrac{{a - ax - by}}{{\left( {1 - x} \right)}} = \dfrac{{b - ay + bx}}{{ - y}}$$

\Rightarrow - y\left( {a - ax - by} \right) = \left( {1 - x} \right)\left( {b - ay + bx} \right) \\
\Rightarrow - ay + axy + b{y^2} = b - bx - ay + axy + bx - b{x^2} \\
\Rightarrow {\text{ }}b{y^2} = b - b{x^2} \\
\Rightarrow {\text{ }}b{y^2} + b{x^2} = b \\
\Rightarrow {\text{ }}{x^2} + {y^2} = 1 \\

Taking square root on both sides $$ \Rightarrow {\text{square root on both sides}}\sqrt {{x^2} + {y^2}} = \sqrt 1 = 1$$ ...... (4) The modulus of the complex number $z = x + iy$ , is equal to the square root of the sum of squares of the real part and imaginary part, denoted by $\left| z \right|$ , i.e., $\left| z \right| = \sqrt {{x^2} + {y^2}} $ From equation (4) $\left| z \right| = \sqrt {{x^2} + {y^2}} = 1$ For $z = 1$ , in the given equation $w - \bar wz = k\left( {1 - z} \right)$ $ \Rightarrow w - \bar w\left( 1 \right) = k\left( {1 - 1} \right) \\\ \Rightarrow w - \bar w = 0 \\\ $ But this contradicts with the equation (1) i.e. $w - \bar w \ne 0$ Hence, $z \ne 1$ **Final answer: Then the set of all complex number z satisfying the equation is $\left| z \right| = 1$ but $z \ne 1$ . Thus, the correct option is (D).** Graphical representation ![](https://www.vedantu.com/question-sets/5f6167a1-6a54-4fac-bcf4-9b0b169f4dee825285141833840592.png) **Note:** Square of Modulus of a complex number is equal to the product of the number and its conjugate. i.e. ${\left| z \right|^2} = z \cdot \bar z$ Alternate steps for simplifying the given complex equation: $ w - \bar wz = k\left( {1 - z} \right) \\\ \Rightarrow w - \bar wz = k - kz \\\ \Rightarrow w - k = - kz + \bar wz \\\ \Rightarrow w - k = z\left( {\bar w - k} \right) \\\ $ Taking modulus and then squaring both sides. $$ \Rightarrow {\left| {w - k} \right|^2} = {\left| {z\left( {\bar w - k} \right)} \right|^2}$$ We know, ${\left| z \right|^2} = z \cdot \bar z$ $$ \Rightarrow \left( {w - k} \right)\left( {\overline {w - k} } \right) = {\left| z \right|^2}\left( {\bar w - k} \right)\left( {\overline {\bar w - k} } \right)$$ Given that k is a real number, therefore conjugate of k = k. $$ \Rightarrow \left( {w - k} \right)\left( {\bar w - k} \right) = {\left| z \right|^2}\left( {\bar w - k} \right)\left( {w - k} \right)$$

\Rightarrow \left( {w - k} \right)\left( {\bar w - k} \right) - {\left| z \right|^2}\left( {\bar w - k} \right)\left( {w - k} \right) = 0 \\
\Rightarrow \left[ {\left( {w - k} \right)\left( {\bar w - k} \right)} \right]\left( {1 - {{\left| z \right|}^2}} \right) = 0 \\

\left( {1 - {{\left| z \right|}^2}} \right) = 0 \\
\Rightarrow {\left| z \right|^2} = 1 \\
\Rightarrow \left| z \right| = 1 \\

\left[ {\left( {w - k} \right)\left( {\bar w - k} \right)} \right] = 0 \\
\Rightarrow \left( {w - k} \right)\left( {\overline {w - k} } \right) = 0 \\
\Rightarrow {\left| {w - k} \right|^2} = 0 \\
\Rightarrow w - k = 0 \\
\Rightarrow w = k \\

But k is a real number, so w would also be a real number. But it contradicts that the w is a complex number. That’s why $w \ne k$ Form the above solution we have, $z \ne 1$. Hence, the correct option is (D).