Question
Mathematics Question on Complex Numbers and Quadratic Equations
Let w=23+i and P=Wn:n=1,2,3,.... Further H_1 = \bigg \\{z \in C: Re \, z >\frac{1}{2}\bigg \\} and $H_2=\bigg[ z\in C: Re ,z
A
2π
B
6π
C
32π
D
61π
Answer
61π
Explanation
Solution
PLAN It is the simple representation of points on Argand plane and
to find the angle between the points
Here, P = Wn=(cos6π+isin6π)n=cos6nπ+isin6nπ
H_1=\bigg \\{z \in \, C: Re(z)>\frac{1}{2}\bigg \\}
∴P∩H1 represents those points for which cos6nπis+ve
Hence, it belongs to I or IV quadrant
⇒z1=P∩H=cos6π+isin6π
or cos611π+isin611π
∴z1=23+2ior23−2i....(i)
Similarly
z2=P∩H2 i.e. those points for which
cos6nπ<0
∴z2=cosπ+isinπ,cos65π,6cos7π
\hspace45mm +i sin \frac{7\pi}{6}
⇒z2=−1.2−3+2i,2−3−2i
Thus,∠z1Oz2=32π,61π