Solveeit Logo

Question

Question: Let w be a complex cube root of unity with ω ≠ 1. A fair die is thrown three times. If \( {{\text{r}...

Let w be a complex cube root of unity with ω ≠ 1. A fair die is thrown three times. If r1, r2 and r3{{\text{r}}_1},{\text{ }}{{\text{r}}_2}{\text{ and }}{{\text{r}}_3} are the numbers obtained on the die then the probability that ωr1+ωr2+ωr3=0{\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 is
A. 118 B. 19 C. 29 D. 136  {\text{A}}{\text{. }}\dfrac{1}{{18}} \\\ {\text{B}}{\text{. }}\dfrac{1}{9} \\\ {\text{C}}{\text{. }}\dfrac{2}{9} \\\ {\text{D}}{\text{. }}\dfrac{1}{{36}} \\\

Explanation

Solution

Hint: In order to find the probability we use the condition of cube roots of unity, then we compute the possibilities of ωr1+ωr2+ωr3=0{\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 and then apply the formula of probability to find the answer.
We will use one property of cube root of unity i.e. 1+ω+ω2=01 + \omega + {\omega ^2} = 0

Complete step-by-step answer:
Given Data, ωr1+ωr2+ωr3=0{\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0
The total number of outcomes when a fair die is rolled 3 times is 6 × 6 × 6 = 216.
Cube root of unity is bound by a condition:- 1+ω+ω2=01 + \omega + {\omega ^2} = 0
The numbers of the die are 1, 2, 3, 4, 5 and 6.
The numbers are of the form 3k, 3k+1 and 3k+2, i.e.
3k --- 3 and 6
3k+1 --- 1 and 4
3k+2 --- 2 and 5
Let r1{{\text{r}}_1} ϵ 3k, r2{{\text{r}}_2} ϵ 3k+1 and r3{{\text{r}}_3} ϵ 3k+2
Now ωr1+ωr2+ωr3=0{\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 ,
ω3k+ω3k + 1+ω3k + 2 ω3k(1+ω+ω2) 0  \Rightarrow {\omega ^{{\text{3k}}}} + {\omega ^{{\text{3k + 1}}}} + {\omega ^{{\text{3k + 2}}}} \\\ \Rightarrow {\omega ^{{\text{3k}}}}\left( {1 + \omega + {\omega ^2}} \right) \\\ \Rightarrow 0 \\\ --- As we know 1+ω+ω2=01 + \omega + {\omega ^2} = 0
Hence ωr1+ωr2+ωr3=0{\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 is true, only if r1{{\text{r}}_1} ϵ 3k, r2{{\text{r}}_2} ϵ 3k+1 and r3{{\text{r}}_3} ϵ 3k+2.
Now the number of favorable outcomes =
We can arrange each of the elements from r1{{\text{r}}_1} , r2{{\text{r}}_2} and r3{{\text{r}}_3} in 2C1{}^2{{\text{C}}_1} × 2C1{}^2{{\text{C}}_1} × 2C1{}^2{{\text{C}}_1} ways.
And we can arrange r1{{\text{r}}_1} , r2{{\text{r}}_2} and r3{{\text{r}}_3} in 3! Ways.
(As we know we can arrange n terms in n! ways and n! = n (n-1) (n-2)…… (n - (n-1))).
Hence the number of favorable ways = 3! × 2C1{}^2{{\text{C}}_1} × 2C1{}^2{{\text{C}}_1} × 2C1{}^2{{\text{C}}_1}
= 6 × 2 × 2 × 2
= 48.
Hence the probability that ωr1+ωr2+ωr3=0{\omega ^{{{\text{r}}_1}}} + {\omega ^{{{\text{r}}_2}}} + {\omega ^{{{\text{r}}_3}}} = 0 is number of favorable waystotal number of possibilities\dfrac{{{\text{number of favorable ways}}}}{{{\text{total number of possibilities}}}}
⟹Probability = 48216=29\dfrac{{48}}{{216}} = \dfrac{2}{9}
Hence Option C is the correct answer.

Note – In order to solve this type of problems the key is to have enough knowledge in the cube roots of unity and its condition. A fair dice has 6 possible outcomes when rolled once. It is important to identify that picking a term from each of r1{{\text{r}}_1} , r2{{\text{r}}_2} and r3{{\text{r}}_3} is a combination but not a permutation, also while finding the favorable possibilities we must remember to consider the possibilities of arranging r1{{\text{r}}_1} , r2{{\text{r}}_2} and r3{{\text{r}}_3} respectively.