Solveeit Logo

Question

Question: Let $\vec{u}$, $\vec{v}$ and $\vec{w}$ be vectors in three-dimensional space, where $\vec{u}$ and $\...

Let u\vec{u}, v\vec{v} and w\vec{w} be vectors in three-dimensional space, where u\vec{u} and v\vec{v} are unit vectors which are not perpendicular to each other and

uw=1\vec{u} \cdot \vec{w} = 1, vw=1\vec{v} \cdot \vec{w} = 1, ww=4\vec{w} \cdot \vec{w} = 4

{uu=u2=1vv=v2=1uv=Cosθ\begin{cases} \vec{u} \cdot \vec{u} = |\vec{u}|^2 = 1 \\ \vec{v} \cdot \vec{v} = |\vec{v}|^2 = 1 \\ \vec{u} \cdot \vec{v} = Cos\theta \end{cases}

If the volume of the parallelopiped, whose adjacent sides are represented by the vectors u\vec{u}, v\vec{v} and w\vec{w}, is 2\sqrt{2}, then the value of 3u+5v|3\vec{u}+5\vec{v}| is __.

Answer

7

Explanation

Solution

The square of the magnitude of 3u+5v3\vec{u}+5\vec{v} is calculated as: 3u+5v2=(3u+5v)(3u+5v)|3\vec{u}+5\vec{v}|^2 = (3\vec{u}+5\vec{v}) \cdot (3\vec{u}+5\vec{v}) 3u+5v2=9(uu)+15(uv)+15(vu)+25(vv)|3\vec{u}+5\vec{v}|^2 = 9(\vec{u} \cdot \vec{u}) + 15(\vec{u} \cdot \vec{v}) + 15(\vec{v} \cdot \vec{u}) + 25(\vec{v} \cdot \vec{v}) Since u\vec{u} and v\vec{v} are unit vectors, u2=uu=1|\vec{u}|^2 = \vec{u} \cdot \vec{u} = 1 and v2=vv=1|\vec{v}|^2 = \vec{v} \cdot \vec{v} = 1. Also, uv=vu\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}. 3u+5v2=9(1)+30(uv)+25(1)|3\vec{u}+5\vec{v}|^2 = 9(1) + 30(\vec{u} \cdot \vec{v}) + 25(1) 3u+5v2=34+30(uv)|3\vec{u}+5\vec{v}|^2 = 34 + 30(\vec{u} \cdot \vec{v})

The square of the volume (V2V^2) of the parallelepiped formed by u\vec{u}, v\vec{v}, and w\vec{w} is given by the determinant of the Gram matrix: V2=uuuvuwvuvvvwwuwvwwV^2 = \begin{vmatrix} \vec{u} \cdot \vec{u} & \vec{u} \cdot \vec{v} & \vec{u} \cdot \vec{w} \\ \vec{v} \cdot \vec{u} & \vec{v} \cdot \vec{v} & \vec{v} \cdot \vec{w} \\ \vec{w} \cdot \vec{u} & \vec{w} \cdot \vec{v} & \vec{w} \cdot \vec{w} \end{vmatrix} Given V=2V = \sqrt{2}, so V2=2V^2 = 2. We have: uu=1\vec{u} \cdot \vec{u} = 1 vv=1\vec{v} \cdot \vec{v} = 1 ww=4\vec{w} \cdot \vec{w} = 4 uw=1\vec{u} \cdot \vec{w} = 1 vw=1\vec{v} \cdot \vec{w} = 1 Let x=uvx = \vec{u} \cdot \vec{v}. Substituting these values: 2=1x1x111142 = \begin{vmatrix} 1 & x & 1 \\ x & 1 & 1 \\ 1 & 1 & 4 \end{vmatrix} 2=1(41)x(4x1)+1(x1)2 = 1(4-1) - x(4x-1) + 1(x-1) 2=34x2+x+x12 = 3 - 4x^2 + x + x - 1 2=24x2+2x2 = 2 - 4x^2 + 2x 0=4x2+2x0 = -4x^2 + 2x 4x22x=04x^2 - 2x = 0 2x(2x1)=02x(2x - 1) = 0 The possible values for xx are x=0x=0 or x=1/2x=1/2. Since u\vec{u} and v\vec{v} are not perpendicular, uv0\vec{u} \cdot \vec{v} \neq 0. Therefore, uv=1/2\vec{u} \cdot \vec{v} = 1/2.

Now, substitute this value back into the expression for 3u+5v2|3\vec{u}+5\vec{v}|^2: 3u+5v2=34+30(12)|3\vec{u}+5\vec{v}|^2 = 34 + 30\left(\frac{1}{2}\right) 3u+5v2=34+15|3\vec{u}+5\vec{v}|^2 = 34 + 15 3u+5v2=49|3\vec{u}+5\vec{v}|^2 = 49 Taking the square root: 3u+5v=49=7|3\vec{u}+5\vec{v}| = \sqrt{49} = 7