Question
Question: Let $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ makes equal angles with $\vec{b} = y\hat{i} - 2z\hat{...
Let a=xi^+yj^+zk^ makes equal angles with b=yi^−2zj^+3xk^ and c=2zi^+3xj^−yk^. Let d=i^−j^+2k^ such that a⊥d and if ∣a∣=23, then
The value of a⋅b is equal to
A
12
B
-12
C
24
D
-24
Answer
-24
Explanation
Solution
Solution:
We are given:
a=(x,y,z),b=(y,−2z,3x),c=(2z,3x,−y),with ∣a∣=23 and a making equal angles with b and c. Also, a⊥d, where d=(1,−1,2).
- Equal Angle Condition:
Since a makes equal angles with b and c and ∣b∣=∣c∣ (their components are just permuted),
∣a∣∣b∣a⋅b=∣a∣∣c∣a⋅c⇒a⋅b=a⋅c.Calculate:
a⋅b=xy−2yz+3xz,a⋅c=2xz+3xy−yz.Equate:
xy−2yz+3xz=2xz+3xy−yz.Rearranging,
−2xy+xz−yz=0⇒xz−yz=2xy.Factor LHS:
z(x−y)=2xy.(i)- Perpendicularity Condition:
Substitute (ii) in (i):
z(−2z)=2xy⇒−2z2=2xy⇒xy=−z2.(iii)- Find x,y,z:
Use (ii) to set x−y=−2z and notice that if we choose x+y=0 then:
- Solve: x+y=0 and x−y=−2z ⇒ Adding, 2x=−2z so x=−z and hence y=z.
- Check (iii): xy=(−z)(z)=−z2 holds.
Now, using ∣a∣2=x2+y2+z2=12:
(−z)2+z2+z2=3z2=12⇒z2=4.Take z=2 (any choice works as the dot product is unique up to sign):
x=−2,y=2,z=2.- Compute a⋅b:
Substitute:
(−2)(2)−2(2)(2)+3(−2)(2)=−4−8−12=−24.Thus, the answer is -24.