Solveeit Logo

Question

Question: Let $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ makes equal angles with $\vec{b} = y\hat{i} - 2z\hat{...

Let a=xi^+yj^+zk^\vec{a} = x\hat{i} + y\hat{j} + z\hat{k} makes equal angles with b=yi^2zj^+3xk^\vec{b} = y\hat{i} - 2z\hat{j} + 3x\hat{k} and c=2zi^+3xj^yk^\vec{c} = 2z\hat{i} + 3x\hat{j} - y\hat{k}. Let d=i^j^+2k^\vec{d} = \hat{i} - \hat{j} + 2\hat{k} such that ad\vec{a} \perp \vec{d} and if a=23|\vec{a}| = 2\sqrt{3}, then

The value of ab\vec{a} \cdot \vec{b} is equal to

A

12

B

-12

C

24

D

-24

Answer

-24

Explanation

Solution

Solution:

We are given:

a=(x,y,z),b=(y,2z,3x),c=(2z,3x,y),\vec{a}=(x,y,z),\quad \vec{b}=(y,-2z,3x),\quad \vec{c}=(2z,3x,-y),

with a=23|\vec{a}|=2\sqrt{3} and a\vec{a} making equal angles with b\vec{b} and c\vec{c}. Also, ad\vec{a}\perp \vec{d}, where d=(1,1,2)\vec{d}=(1,-1,2).

  1. Equal Angle Condition:

Since a\vec{a} makes equal angles with b\vec{b} and c\vec{c} and b=c|\vec{b}|=|\vec{c}| (their components are just permuted),

abab=acacab=ac.\frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}=\frac{\vec{a}\cdot \vec{c}}{|\vec{a}||\vec{c}|} \quad\Rightarrow\quad \vec{a}\cdot\vec{b}=\vec{a}\cdot\vec{c}.

Calculate:

ab=xy2yz+3xz,ac=2xz+3xyyz.\vec{a}\cdot\vec{b}=xy-2yz+3xz,\qquad \vec{a}\cdot\vec{c}=2xz+3xy-yz.

Equate:

xy2yz+3xz=2xz+3xyyz.xy-2yz+3xz=2xz+3xy-yz.

Rearranging,

2xy+xzyz=0xzyz=2xy.-2xy+xz-yz=0 \quad\Rightarrow\quad xz-yz=2xy.

Factor LHS:

z(xy)=2xy.(i)z(x-y)=2xy. \quad \text{(i)}
  1. Perpendicularity Condition:
ad=xy+2z=0xy=2z.(ii)\vec{a}\cdot\vec{d}=x-y+2z=0 \quad\Rightarrow\quad x-y=-2z. \quad \text{(ii)}

Substitute (ii) in (i):

z(2z)=2xy2z2=2xyxy=z2.(iii)z(-2z)=2xy\quad\Rightarrow\quad -2z^2=2xy \quad\Rightarrow\quad xy=-z^2. \quad \text{(iii)}
  1. Find x,y,zx,y,z:

Use (ii) to set xy=2zx-y=-2z and notice that if we choose x+y=0x+y=0 then:

  • Solve: x+y=0x+y=0 and xy=2zx-y=-2z ⇒ Adding, 2x=2z2x=-2z so x=zx=-z and hence y=zy=z.
  • Check (iii): xy=(z)(z)=z2xy=(-z)(z)=-z^2 holds.

Now, using a2=x2+y2+z2=12|\vec{a}|^2=x^2+y^2+z^2=12:

(z)2+z2+z2=3z2=12z2=4.(-z)^2+z^2+z^2=3z^2=12 \quad\Rightarrow\quad z^2=4.

Take z=2z=2 (any choice works as the dot product is unique up to sign):

x=2,y=2,z=2.x=-2,\quad y=2,\quad z=2.
  1. Compute ab\vec{a}\cdot \vec{b}:
ab=xy2yz+3xz.\vec{a}\cdot \vec{b}=xy-2yz+3xz.

Substitute:

(2)(2)2(2)(2)+3(2)(2)=4812=24.(-2)(2)-2(2)(2)+3(-2)(2)=-4-8-12=-24.

Thus, the answer is -24.