Solveeit Logo

Question

Question: Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors each of magnitude $\sqrt{3}$ and the angle between ...

Let a,b,c\vec{a}, \vec{b}, \vec{c} be three vectors each of magnitude 3\sqrt{3} and the angle between each pair of them is π3\frac{\pi}{3}. If b×c+c×a=xa+yb+zc\vec{b} \times \vec{c} + \vec{c} \times \vec{a} = x\vec{a} + y\vec{b} + z\vec{c} where x,y,zx, y, z are scalars, then

A

volume of parallelpiped formed by a,b,c\vec{a}, \vec{b}, \vec{c} is 332\frac{3\sqrt{3}}{\sqrt{2}}

B

the value of xx is 32\frac{\sqrt{3}}{\sqrt{2}}

C

x2+y2+z221x^2 + y^2 + z^2 \leq \sqrt{21}

Answer

All three options are correct.

Explanation

Solution

The problem provides three vectors a,b,c\vec{a}, \vec{b}, \vec{c} with equal magnitude a=b=c=3|\vec{a}| = |\vec{b}| = |\vec{c}| = \sqrt{3}, and the angle between each pair is π3\frac{\pi}{3}. We have the relation b×c+c×a=xa+yb+zc\vec{b} \times \vec{c} + \vec{c} \times \vec{a} = x\vec{a} + y\vec{b} + z\vec{c}.

First, let's calculate the scalar products of these vectors: aa=a2=(3)2=3\vec{a} \cdot \vec{a} = |\vec{a}|^2 = (\sqrt{3})^2 = 3. Similarly, bb=3\vec{b} \cdot \vec{b} = 3 and cc=3\vec{c} \cdot \vec{c} = 3. ab=abcos(π3)=3312=32\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos(\frac{\pi}{3}) = \sqrt{3} \cdot \sqrt{3} \cdot \frac{1}{2} = \frac{3}{2}. Similarly, bc=32\vec{b} \cdot \vec{c} = \frac{3}{2} and ca=32\vec{c} \cdot \vec{a} = \frac{3}{2}.

Option (1): Volume of the parallelpiped formed by a,b,c\vec{a}, \vec{b}, \vec{c} is [abc]|[\vec{a} \vec{b} \vec{c}]|. The square of the scalar triple product is given by the Gram determinant: [abc]2=aaabacbabbbccacbcc=33/23/23/233/23/23/23[\vec{a} \vec{b} \vec{c}]^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix} = \begin{vmatrix} 3 & 3/2 & 3/2 \\ 3/2 & 3 & 3/2 \\ 3/2 & 3/2 & 3 \end{vmatrix} =3(333232)32(3233232)+32(3232332)= 3(3 \cdot 3 - \frac{3}{2} \cdot \frac{3}{2}) - \frac{3}{2}(\frac{3}{2} \cdot 3 - \frac{3}{2} \cdot \frac{3}{2}) + \frac{3}{2}(\frac{3}{2} \cdot \frac{3}{2} - 3 \cdot \frac{3}{2}) =3(994)32(9294)+32(9492)= 3(9 - \frac{9}{4}) - \frac{3}{2}(\frac{9}{2} - \frac{9}{4}) + \frac{3}{2}(\frac{9}{4} - \frac{9}{2}) =3(274)32(94)+32(94)=814278278=814548=814274=544=272= 3(\frac{27}{4}) - \frac{3}{2}(\frac{9}{4}) + \frac{3}{2}(-\frac{9}{4}) = \frac{81}{4} - \frac{27}{8} - \frac{27}{8} = \frac{81}{4} - \frac{54}{8} = \frac{81}{4} - \frac{27}{4} = \frac{54}{4} = \frac{27}{2}. The volume is [abc]=272=272=332|[\vec{a} \vec{b} \vec{c}]| = \sqrt{\frac{27}{2}} = \frac{\sqrt{27}}{\sqrt{2}} = \frac{3\sqrt{3}}{\sqrt{2}}. Option (1) states the volume is 332\frac{3\sqrt{3}}{\sqrt{2}}, which is correct.

To find x,y,zx, y, z, take the dot product of the given equation b×c+c×a=xa+yb+zc\vec{b} \times \vec{c} + \vec{c} \times \vec{a} = x\vec{a} + y\vec{b} + z\vec{c} with a,b,c\vec{a}, \vec{b}, \vec{c}. Dot product with a\vec{a}: a(b×c+c×a)=a(xa+yb+zc)\vec{a} \cdot (\vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = \vec{a} \cdot (x\vec{a} + y\vec{b} + z\vec{c}) a(b×c)+a(c×a)=x(aa)+y(ab)+z(ac)\vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{c} \times \vec{a}) = x(\vec{a} \cdot \vec{a}) + y(\vec{a} \cdot \vec{b}) + z(\vec{a} \cdot \vec{c}) [abc]+0=3x+32y+32z[\vec{a} \vec{b} \vec{c}] + 0 = 3x + \frac{3}{2}y + \frac{3}{2}z 332=3x+32y+32z\frac{3\sqrt{3}}{\sqrt{2}} = 3x + \frac{3}{2}y + \frac{3}{2}z. Dividing by 3: 32=x+12y+12z\frac{\sqrt{3}}{\sqrt{2}} = x + \frac{1}{2}y + \frac{1}{2}z. (Equation 1)

Dot product with b\vec{b}: b(b×c+c×a)=b(xa+yb+zc)\vec{b} \cdot (\vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = \vec{b} \cdot (x\vec{a} + y\vec{b} + z\vec{c}) b(b×c)+b(c×a)=x(ba)+y(bb)+z(bc)\vec{b} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{c} \times \vec{a}) = x(\vec{b} \cdot \vec{a}) + y(\vec{b} \cdot \vec{b}) + z(\vec{b} \cdot \vec{c}) 0+[bca]=32x+3y+32z0 + [\vec{b} \vec{c} \vec{a}] = \frac{3}{2}x + 3y + \frac{3}{2}z [abc]=32x+3y+32z[\vec{a} \vec{b} \vec{c}] = \frac{3}{2}x + 3y + \frac{3}{2}z 332=32x+3y+32z\frac{3\sqrt{3}}{\sqrt{2}} = \frac{3}{2}x + 3y + \frac{3}{2}z. Dividing by 3: 32=12x+y+12z\frac{\sqrt{3}}{\sqrt{2}} = \frac{1}{2}x + y + \frac{1}{2}z. (Equation 2)

Dot product with c\vec{c}: c(b×c+c×a)=c(xa+yb+zc)\vec{c} \cdot (\vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = \vec{c} \cdot (x\vec{a} + y\vec{b} + z\vec{c}) c(b×c)+c(c×a)=x(ca)+y(cb)+z(cc)\vec{c} \cdot (\vec{b} \times \vec{c}) + \vec{c} \cdot (\vec{c} \times \vec{a}) = x(\vec{c} \cdot \vec{a}) + y(\vec{c} \cdot \vec{b}) + z(\vec{c} \cdot \vec{c}) 0+0=32x+32y+3z0 + 0 = \frac{3}{2}x + \frac{3}{2}y + 3z 0=32x+32y+3z0 = \frac{3}{2}x + \frac{3}{2}y + 3z. Dividing by 3/2: 0=x+y+2z0 = x + y + 2z. (Equation 3)

We have the system of equations:

  1. x+12y+12z=32x + \frac{1}{2}y + \frac{1}{2}z = \frac{\sqrt{3}}{\sqrt{2}}
  2. 12x+y+12z=32\frac{1}{2}x + y + \frac{1}{2}z = \frac{\sqrt{3}}{\sqrt{2}}
  3. x+y+2z=0x + y + 2z = 0

From (1) and (2), x+y+z2=x+z2+yx + \frac{y+z}{2} = \frac{x+z}{2} + y, which implies x+y2=x2+yx + \frac{y}{2} = \frac{x}{2} + y, so x2=y2\frac{x}{2} = \frac{y}{2}, which gives x=yx=y. Substitute y=xy=x into (3): x+x+2z=0    2x+2z=0    x+z=0    z=xx + x + 2z = 0 \implies 2x + 2z = 0 \implies x + z = 0 \implies z = -x. Substitute y=xy=x and z=xz=-x into (1): x+12x+12(x)=32    x=32x + \frac{1}{2}x + \frac{1}{2}(-x) = \frac{\sqrt{3}}{\sqrt{2}} \implies x = \frac{\sqrt{3}}{\sqrt{2}}. So, x=32x = \frac{\sqrt{3}}{\sqrt{2}}, y=32y = \frac{\sqrt{3}}{\sqrt{2}}, z=32z = -\frac{\sqrt{3}}{\sqrt{2}}.

Option (2): the value of xx is 32\frac{\sqrt{3}}{\sqrt{2}}. This is correct.

Option (3): x2+y2+z221x^2 + y^2 + z^2 \leq \sqrt{21}. x2+y2+z2=(32)2+(32)2+(32)2=32+32+32=92=4.5x^2 + y^2 + z^2 = (\frac{\sqrt{3}}{\sqrt{2}})^2 + (\frac{\sqrt{3}}{\sqrt{2}})^2 + (-\frac{\sqrt{3}}{\sqrt{2}})^2 = \frac{3}{2} + \frac{3}{2} + \frac{3}{2} = \frac{9}{2} = 4.5. We need to check if 4.5214.5 \leq \sqrt{21}. Squaring both sides, we check if (4.5)2(21)2(4.5)^2 \leq (\sqrt{21})^2. 4.52=20.254.5^2 = 20.25. 212=21\sqrt{21}^2 = 21. Since 20.252120.25 \leq 21, the inequality 4.5214.5 \leq \sqrt{21} is true. Option (3) is correct.

All three options are correct.