Solveeit Logo

Question

Question: Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and let $\vec{r}$ be a variable vector such that $\vec{r...

Let a=i^+j^+k^\vec{a} = \hat{i} + \hat{j} + \hat{k} and let r\vec{r} be a variable vector such that r.i^\vec{r}.\hat{i}, r.j^\vec{r}.\hat{j} and r.k^\vec{r}.\hat{k} are positive integers.

If r.a12\vec{r}.\vec{a} \le 12, then the total number of such vectors is:

A

12C91^{12}C_9 - 1

B

12C3^{12}C_3

C

12C8^{12}C_8

D

12C4^{12}C_4

Answer

(B)

Explanation

Solution

Let r=xi^+yj^+zk^\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}.

Given conditions:

  1. r.i^=x\vec{r}.\hat{i} = x, r.j^=y\vec{r}.\hat{j} = y, r.k^=z\vec{r}.\hat{k} = z are positive integers. So x,y,z1x, y, z \ge 1.
  2. a=i^+j^+k^\vec{a} = \hat{i} + \hat{j} + \hat{k}.
  3. r.a12\vec{r}.\vec{a} \le 12. This implies x+y+z12x+y+z \le 12.

We need to find the number of positive integer solutions (x,y,z)(x, y, z) for x+y+z12x+y+z \le 12.

Let x=x1x' = x-1, y=y1y' = y-1, z=z1z' = z-1. Then x,y,z0x', y', z' \ge 0.

Substituting these into the inequality:

(x+1)+(y+1)+(z+1)12(x'+1) + (y'+1) + (z'+1) \le 12

x+y+z+312x' + y' + z' + 3 \le 12

x+y+z9x' + y' + z' \le 9.

To find the number of non-negative integer solutions for x+y+z9x' + y' + z' \le 9, we introduce a non-negative integer slack variable s0s \ge 0.

The inequality becomes an equation: x+y+z+s=9x' + y' + z' + s = 9.

This is a stars and bars problem with N=9N=9 (stars) and k=4k=4 (variables x,y,z,sx', y', z', s).

The number of solutions is given by (N+k1k1)\binom{N+k-1}{k-1} or (N+k1N)\binom{N+k-1}{N}.

Number of solutions = (9+4141)=(123)\binom{9+4-1}{4-1} = \binom{12}{3}.

Alternatively, Number of solutions = (9+419)=(129)\binom{9+4-1}{9} = \binom{12}{9}.

Both expressions are numerically equal.

The total number of such vectors is 12C3^{12}C_3.