Solveeit Logo

Question

Question: Let $\vec{a} = 5\hat{i} - \hat{j} - 3\hat{k}$ and $\vec{b} = \hat{i} + 3\hat{j} + 5\hat{k}$ be two v...

Let a=5i^j^3k^\vec{a} = 5\hat{i} - \hat{j} - 3\hat{k} and b=i^+3j^+5k^\vec{b} = \hat{i} + 3\hat{j} + 5\hat{k} be two vectors. Then which one of the following statements is TRUE?

A

Projection of a\vec{a} on b\vec{b} is 1335\frac{-13}{\sqrt{35}} and the direction of the projection vector is opposite to the direction of b\vec{b}

B

Projection of a\vec{a} on b\vec{b} is 1735\frac{-17}{\sqrt{35}} and the direction of the projection vector is opposite to the direction of b\vec{b}

C

Projection of a\vec{a} on b\vec{b} is 1735\frac{17}{\sqrt{35}} and the direction of the projection vector is opposite to the direction of b\vec{b}

D

Projection of a\vec{a} on b\vec{b} is 1335\frac{13}{\sqrt{35}} and the direction of the projection vector is opposite to the direction of b\vec{b}

Answer

Projection of a\vec{a} on b\vec{b} is 1335\frac{-13}{\sqrt{35}} and the direction of the projection vector is opposite to the direction of b\vec{b}

Explanation

Solution

The projection of vector a\vec{a} on vector b\vec{b} is given by the formula: projba=abb2bproj_{\vec{b}}\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b}

First, we calculate the dot product of a\vec{a} and b\vec{b}: ab=(5)(1)+(1)(3)+(3)(5)=5315=13\vec{a} \cdot \vec{b} = (5)(1) + (-1)(3) + (-3)(5) = 5 - 3 - 15 = -13

Next, we calculate the magnitude of vector b\vec{b}: b=(1)2+(3)2+(5)2=1+9+25=35|\vec{b}| = \sqrt{(1)^2 + (3)^2 + (5)^2} = \sqrt{1 + 9 + 25} = \sqrt{35}

The scalar projection of a\vec{a} on b\vec{b} is abb=1335\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{-13}{\sqrt{35}}.

The projection vector is projba=13(35)2b=1335bproj_{\vec{b}}\vec{a} = \frac{-13}{(\sqrt{35})^2} \vec{b} = \frac{-13}{35} \vec{b}. Since the scalar multiplier 1335\frac{-13}{35} is negative, the projection vector is in the opposite direction to b\vec{b}.