Question
Mathematics Question on Vector Algebra
Let v=αi^+2j^−3k^,w=2αi^+j^−k^ and u be a vector such that |\vec{u}|=\alpha>0; If the minimum value of the scalar triple product [uvw] is −α3401, and ∣u⋅i^∣2=nm where m and n are coprime natural numbers, then m+n is equal to _____
Answer
The correct answer is 3501
[uvw]=u.(v×w)
min.(∣u∣∣v×w∣cosθ)=−α3401
⇒cosθ=−1
∣u∣=α(Given)
∣v×w∣=3401
v×w=i^ α 2αj^21k^−3−1
v×w=i^−5αj^−3αk^
∣v×w∣=1+25α2+9α2=3401
34α2=3400
α2=100
α=10(asα>0)
sou=λ(i^−5αj^−3αk^)
u=λ2+25α2λ2+9α2λ
α2=λ2(1+25α2+9α2)
100=λ2(1+34×100)
λ2=3401100=nm