Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let v=αi^+2j^3k^,w=2αi^+j^k^\vec{v}=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, \vec{w}=2 \alpha \hat{i}+\hat{j}-\hat{k} and u\vec{u} be a vector such that |\vec{u}|=\alpha&gt0; If the minimum value of the scalar triple product [uvw][\vec{u}\,\, \vec{v}\,\, \vec{w}] is α3401-\alpha \sqrt{3401}, and ui^2=mn|\vec{u} \cdot \hat{i}|^2=\frac{m}{n} where mm and nn are coprime natural numbers, then m+nm+n is equal to _____

Answer

The correct answer is 3501

[uvw]=u.(v×w)[\vec{u}\vec{v}\vec{w}]=\vec{u}.(\vec{v}\times\vec{w})

min.(uv×wcosθ)=α3401min.(|u||\vec{v}\times\vec{w}|cos\theta)=-\alpha \sqrt{3401}

cosθ=1\Rightarrow cos\theta=-1

u=α(Given)|u|=\alpha(Given)

v×w=3401|\vec{v}\times\vec{w}|=\sqrt{3401}

v×w=i^j^k^ α23 2α11 \vec{v}\times\vec{w}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\\ \alpha & 2 & -3 \\\ 2\alpha & 1 & -1 \end{vmatrix}

v×w=i^5αj^3αk^\vec{v}\times\vec{w}=\hat{i}-5\alpha\hat{j}-3\alpha\hat{k}

v×w=1+25α2+9α2=3401|\vec{v}\times\vec{w}|=\sqrt{1+25\alpha^{2}+9\alpha^{2}}=\sqrt{3401}

34α2=340034\alpha ^{2}=3400

α2=100\alpha ^{2}=100

α=10(asα>0)\alpha =10(as \: \alpha>0)

sou=λ(i^5αj^3αk^)so\, \: \vec{u}=\lambda (\hat{i}-5\alpha\hat{j}-3\alpha\hat{k})

u=λ2+25α2λ2+9α2λ \vec{u}=\sqrt{\lambda ^{2}+25\alpha ^{2}\lambda ^{2}+9\alpha ^{2 }\lambda}

α2=λ2(1+25α2+9α2) \alpha ^{2}=\lambda ^{2}(1+25\alpha ^{2}+9\alpha ^{2 })

100=λ2(1+34×100) 100=\lambda ^{2}(1+34\times100)

λ2=1003401=mn\lambda ^{2}=\frac{100}{3401}=\frac{m}{n}