Solveeit Logo

Question

Mathematics Question on Multiplication of a Vector by a Scalar

Let α.β,γ\vec{\alpha} . \vec{\beta} , \vec{\gamma} be three unit vectors such that α.β=α.γ=0\vec{\alpha} . \vec{\beta} = \vec{\alpha} . \vec{\gamma} = 0 and the angle between β\vec{\beta} and γ\vec{\gamma} is 3030^{\circ} . Then α\vec{\alpha} is

A

2(β×γ)2 ( \vec{\beta} \times \vec{\gamma})

B

2(β×γ) - 2 ( \vec{\beta} \times \vec{\gamma})

C

±2(β×γ)\pm 2 ( \vec{\beta} \times \vec{\gamma})

D

(β×γ) ( \vec{\beta} \times \vec{\gamma})

Answer

±2(β×γ)\pm 2 ( \vec{\beta} \times \vec{\gamma})

Explanation

Solution

α=λ(β×γ)=λ(βγsin30\vec{\alpha}=\lambda(\vec{\beta} \times \vec{\gamma})=\lambda\left(\vec{\beta}|| \vec{\gamma}|| \sin 30^{\circ} \mid\right.
α=λ(βγ12)\Rightarrow |\vec{\alpha}|=|\lambda|\left(|\beta||\vec{\gamma}| \cdot \frac{1}{2}\right)
1=λ1112\Rightarrow 1=|\lambda| \cdot 1 \cdot 1 \cdot \frac{1}{2}
λ=2\Rightarrow |\lambda|=2
λ=±2\Rightarrow \lambda=\pm 2
α=±2(β×γ)\therefore \vec{\alpha}=\pm 2(\vec{\beta} \times \vec{\gamma})