Solveeit Logo

Question

Mathematics Question on Product of Two Vectors

Let α=i^+j^+k^,β=i^j^k^\vec{\alpha } = \hat{i} + \hat{j} + \hat{k} , \vec{\beta} = \hat{i} - \hat{j} - \hat{k} and γ=i^+j^k^\vec{\gamma} = - \hat{i} + \hat{j} - \hat{k} be three vectors. A vector δ\vec{\delta} , in the plane of α\vec{\alpha} and β\vec{\beta}, whose projection on γ\vec{\gamma} is 13\frac{1}{\sqrt{3}}, is given by

A

i^3j^3k^ \hat{i} - 3 \hat{j} - 3 \hat{k}

B

3i^3j^k^-\hat{3i} - 3 \hat{j} - \hat{k}

C

3i^j^+3k^ \hat{3i} - \hat{j} + 3 \hat{k}

D

i^+3j^3k^ \hat{i} + 3 \hat{j} - 3 \hat{k}

Answer

3i^j^+3k^ \hat{3i} - \hat{j} + 3 \hat{k}

Explanation

Solution

The correct answer is C:3i^j^+3k^3\hat{i}-\hat j+3\hat k
Given that;
a=i^+j^+k^\vec{a}=\hat i+\hat j+\hat k
b=i^j^+k^\vec{b}=\hat i-\hat j+\hat k
c=i^j^k^\vec{c}=\hat i-\hat j-\hat k
v\vec{v} on a,b\vec{a},\vec{b} whose projection on c\vec{c} is 13\frac{1}{\sqrt{3}}
So, Let v=λa+μb\vec{v}=\lambda \vec{a}+\mu \vec{b}
v=(λ+μ)i^+(λμ)j^+(λ+μ)k^\vec{v}=(\lambda+\mu)\hat i+(\lambda-\mu)\hat j+(\lambda+\mu)\hat k
projection of v\vec{v} on \vec{c}$$=\frac{\vec{v}.\vec{c}}{|\vec{c}|}=\frac{1}{\sqrt{3}}
(λ+μ)(λμ)(λ+μ)3=13\frac{(\lambda+\mu)-(\lambda-\mu)-(\lambda+\mu)}{\sqrt{3}}=\frac{1}{\sqrt{3}}
(c=12+(1)2+(1)2=3)\because(\vec{c}=\sqrt{1^2+(-1)^2+(-1)^2}=\sqrt{3})
μλ=1\mu-\lambda=1
v=(2λ+1)i^j^+(2λ+1)k^\vec{v}=(2\lambda+1)\hat{i}-\hat{j}+(2\lambda+1)\hat{k}
For λ=1\lambda=1,v=3i^j^+3k^\vec{v}=3\hat{i}-\hat j+3\hat k
Vector
Vector