Question
Mathematics Question on Product of Two Vectors
Let α=i^+j^+k^,β=i^−j^−k^ and γ=−i^+j^−k^ be three vectors. A vector δ, in the plane of α and β, whose projection on γ is 31, is given by
A
i^−3j^−3k^
B
−3i^−3j^−k^
C
3i^−j^+3k^
D
i^+3j^−3k^
Answer
3i^−j^+3k^
Explanation
Solution
The correct answer is C:3i^−j^+3k^
Given that;
a=i^+j^+k^
b=i^−j^+k^
c=i^−j^−k^
v on a,b whose projection on c is 31
So, Let v=λa+μb
v=(λ+μ)i^+(λ−μ)j^+(λ+μ)k^
projection of v on \vec{c}$$=\frac{\vec{v}.\vec{c}}{|\vec{c}|}=\frac{1}{\sqrt{3}}
⇒3(λ+μ)−(λ−μ)−(λ+μ)=31
∵(c=12+(−1)2+(−1)2=3)
⇒μ−λ=1
⇒v=(2λ+1)i^−j^+(2λ+1)k^
For λ=1,v=3i^−j^+3k^