Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a,b,c\vec{a}, \vec{b}, \vec{c} be three vectors such that a=31,4b=c=2|\vec{a}|=\sqrt{31}, 4|\vec{b}|=|\vec{c}|=2 and 2(a×b)=3(c×a)2(\vec{a} \times \vec{b})=3(\vec{c} \times \vec{a}) If the angle between b\vec{b} and c\vec{c} is 2π3\frac{2 \pi}{3}, then (a×cab)2\left(\frac{\vec{a} \times \vec{c}}{\vec{a} \cdot \vec{b}}\right)^2 is equal to _____

Answer

2(a×b)=3(c×a)2(\vec{a}\times\vec{b})=3(\vec{c}\times\vec{a})
a×(2b+3c)=0\vec{a}\times(2\vec{b}+3\vec{c})=0
a=λ(2b+3c)\vec{a}=\lambda (2\vec{b}+3\vec{c})
a2=λ22b+3c2|\vec{a}|^{2}=\lambda ^{2}|2\vec{b}+3\vec{c}|^{2}
a2=λ2(4b2+9c2+12b.c)|\vec{a}|^{2}=\lambda ^{2}(4|\vec{b}|^{2}+9|\vec{c}|^{2}+12\vec{b}.\, \vec{c})
31=31λ2λ=±131=31\lambda ^{2}\Rightarrow \lambda =\pm 1
a=±(2b+3c)\vec{a}=\pm (2\vec{b}+3\vec{c})
a×ca.b=2b×c2b.b+3c.b\frac{|\vec{a}\times\vec{c}|}{|\vec{a}.\vec{b}|}=\frac{2|\vec{b}\times\vec{c}|}{2\vec{b}.\vec{b}+3\vec{c}.\vec{b}}
b×c=b2c2(b.c)2=34|\vec{b}\times\vec{c}|=|\vec{b}|^{2}|\vec{c}|^{2}-(\vec{b}.\vec{c})^{2}=\frac{3}{4}
a×ca.b=2×322.1432=3\frac{ |\vec{a}\times\vec{c}|}{|\vec{a}.\vec{b}|}=\frac{2\times\frac{\sqrt{3}}{2}}{2.\frac{1}{4}-\frac{3}{2}}=-\sqrt{3}
(a×ca.b)2=3(\frac{\vec{a}\times\vec{c}}{\vec{a}.\vec{b}})^{2}=3
So, the correct answer is 3.