Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a,b,c\vec{a},\,\vec{b},\,\vec{c} be three non-zero vectors which are pairwise non-collinear. If a+3b\vec{a}+3\vec{b} is collinear with c\vec{c} and b+2c\vec{b}+2\vec{c} is collinear with a+3b+c\vec{a}+3\vec{b}+\vec{c} is :

A

a\vec{a}

B

c\vec{c}

C

0\vec{0}

D

a+c\vec{a} + \vec{c}

Answer

0\vec{0}

Explanation

Solution

a+3b=λc........(1)\vec{a} +3\vec{b} = \lambda\vec{c}\quad........\left(1\right) b+2c=μa.........(2)\vec{b} + 2\vec{c} = \mu\vec{a} \quad.........\left(2\right) (1)3(2)\left(1\right) - 3\left(2\right) gives (1+3?)a(λ+6)c=0\left(1 + 3?\right) \vec{a} - \left(\lambda + 6\right)\vec{c} = 0 As a\vec{a} and b\vec{b} are non collinear 1+3?=0\therefore 1 + 3? = 0 and λ+6=0\lambda + 6 = 0 From (1)a+3b+6c=0\left(1\right) \vec{a} + 3\vec{b} + 6\vec{c} = \vec{0}