Solveeit Logo

Question

Mathematics Question on Coplanarity of Two Lines

Let a,b,c\vec{a}, \vec{b}, \vec{c}
be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and
(a×b)(b×c)+(b×c)(c×a)+(c×a)(a×b)=168(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168, then a+b+c|\vec{a}| + |\vec{b}| + |\vec{c}|| is equal to :

A

10

B

14

C

16

D

18

Answer

16

Explanation

Solution

abc=14|\vec{a}| |\vec{b}| |\vec{c}| = 14
ab=bc=ca=θ=2π3\vec{a} \land \vec{b} = \vec{b} \land \vec{c} = \vec{c} \land \vec{a} = \theta = \frac{2\pi}{3}
ab=12ab\vec{a} \cdot \vec{b} = -\frac{1}{2} |\vec{a}| |\vec{b}|
bc=12bc\vec{b} \cdot \vec{c} = -\frac{1}{2} |\vec{b}| |\vec{c}|
ca=12ca\vec{c} \cdot \vec{a} = -\frac{1}{2} |\vec{c}| |\vec{a}|
Now,
(a×b)(b×c)+(b×c)(c×a)+(c×a)(a×b)=168   ....(i)(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168\ \ \ ....(i)
(a×b)(b×c)=(ab)(bc)(ac)b2(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}) - (\vec{a} \cdot \vec{c})|\vec{b}|^2
=14b2ac+12ab2c= \frac{1}{4} |\vec{b}|^2 |\vec{a}| |\vec{c}| + \frac{1}{2} |\vec{a}| |\vec{b}|^2 |\vec{c}|
=34ab2c= \frac{3}{4} |\vec{a}| |\vec{b}|^2 |\vec{c}| ...(ii)... (ii)
Similarly (b×c)(c×a)=34abc2(\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) = \frac{3}{4} |\vec{a}| |\vec{b}| |\vec{c}|^2 ...(iii)... (iii)
(c×a)(a×b)=34a2bc(\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = \frac{3}{4} |\vec{a}|^2 |\vec{b}| |\vec{c}| ...(iv)... (iv)
Substitute (ii),(iii),(iv) in (i)
34abc[a+b+c]=168\frac{3}{4} |\vec{a}| |\vec{b}| |\vec{c}| \left[ |\vec{a}| + |\vec{b}| + |\vec{c}| \right] = 168
34×14[a+b+c]=168\frac{3}{4} \times 14 \left[ |\vec{a}| + |\vec{b}| + |\vec{c}| \right] = 168
a+b+c=16|\vec{a}| + |\vec{b}| + |\vec{c}| = 16
So, the correct answer is (C) : 16