Solveeit Logo

Question

Mathematics Question on Vectors

Let a,b\vec{a}, \vec{b} & c\vec{c} be non-coplanar unit vectors equally inclined to one another at an acute angle θ\theta. Then [a  b  c]| [ \vec{a} \; \vec{b} \; \vec{c}] | in terms of θ\theta is equal to

A

(1+cosθ)cos2θ( 1 + \cos \theta) \sqrt{\cos 2 \theta}

B

(1+cosθ)12cosθ( 1 + \cos \theta) \sqrt{1 - 2 \cos \theta}

C

(1+cosθ)1+2cosθ( 1 + \cos \theta) \sqrt{1 + 2 \cos \theta}

D

None of these

Answer

(1+cosθ)1+2cosθ( 1 + \cos \theta) \sqrt{1 + 2 \cos \theta}

Explanation

Solution

we have,
a=b=c=1|\vec{a}|=|\vec{b}|=|\vec{c}|=1
ab=bc=ca=cosθ\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=\cos \theta
Now,
[abc]2=aaabac babbbc cacbcc[\vec{a} \vec{b} \vec{c}]^{2}=\begin{vmatrix}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{vmatrix}
=1cosθcosθ cosθ1cosθ cosθcosθ1=\begin{vmatrix}1 & \cos \theta & \cos \theta \\\ \cos \theta & 1 & \cos \theta \\\ \cos \theta & \cos \theta & 1\end{vmatrix}
=sin2θcos(cosθcos2θ)+cosθ(cos2θcosθ)=\sin ^{2} \theta-\cos \left(\cos \theta-\cos ^{2} \theta\right)+\cos \theta\left(\cos ^{2} \theta-\cos \theta\right)
=sin2θcos2θ+cos3θ+cos3θcos2θ=\sin ^{2} \theta-\cos ^{2} \theta+\cos ^{3} \theta+\cos ^{3} \theta-\cos ^{2} \theta
=sin2θ2cos2θ+2cos3θ=\sin ^{2} \theta-2 \cos ^{2} \theta+2 \cos ^{3} \theta
=13cos2θ+2cos3θ=1-3 \cos ^{2} \theta+2 \cos ^{3} \theta
=(cosθ1)(2cos2θcosθ1)=(\cos \theta-1)\left(2 \cos ^{2} \theta-\cos \theta-1\right)
=(1cosθ)(cosθ+12cos2θ)=(1-\cos \theta)\left(\cos \theta+1-2 \cos ^{2} \theta\right)
=(1cosθ)(1cosθ)(2cosθ+1)=(1-\cos \theta)(1-\cos \theta)(2 \cos \theta+1)
=(1cosθ)2(2cosθ+1)=(1-\cos \theta)^{2}(2 \cos \theta+1)
[abc]=(1cosθ)2cosθ+1[\vec{ a } \vec{ b } \vec{ c }]=(1-\cos \theta) \sqrt{2 \cos \theta+1}