Question
Question: Let \[\vec a,\vec b\]and \(\vec c\) be three non-coplanar unit vectors such that the angle between e...
Let a,band c be three non-coplanar unit vectors such that the angle between every pair of them is 3π. If a×b+b×c=pa+qb+rc , where p,q and r are scalars, then the value of q2p2+2q2+r2 is
A) 1
B) 2
C) 3
D) 4
Solution
For the equations like a×b+b×c=pa+qb+rc in the given question, perform dot product of all the given vectors with given equation one by one.
You’ll get the relation between scalars present in the equation.
Unit vectors are those vectors whose magnitude is 1.
Cross product (or vector product) of two nonzero vectors a and b is the product of the magnitude of both vectors a and b, and sine of the angle between them. i.e.
a^×b^=∣a^∣b^sinθ n^, where θis the acute angle between vectors a and b. Here n^is the unit vector perpendicular to the plane containing vectors a and b.
Dot product (or scalar product) between two non-zero vectors a and b is the product of the magnitude of each vector and cosine of the angle between them:
a⋅b=∣a∣∣b∣cosθ , where θ is the acute angle between vectors a and b.
Complete step-by-step answer:
Step 1: Given that:
a×b+b×c=pa+qb+rc
Where vectors a,band c are unit vector,
Hence, ∣a∣=1 ,
b=1 ,
∣c∣=1
The angle between every pair of them is 3π.
Step 2: Dot product of a vector a with both sides on:
a×b+b×c=pa+qb+rc
a⋅(a×b+b×c)=a⋅(pa+qb+rc)
⇒a⋅(a×b)+a⋅(b×c)=p(a⋅a)+q(a⋅b)+r(a⋅c)
The resultant vector (a×b) is perpendicular to the plane containing a and b i.e. the angle between vectors (a×b) and a is 90∘. Also the angle between vectors (a×b) and b is 90∘.
Hence, a⋅(a×b)=0 …… (1)
\left( {\vec b \cdot \vec b} \right) = \left| {\vec b} \right|\left| {\vec b} \right|\cos 0^\circ \\
\Rightarrow {\left| {\vec b} \right|^2} \\
\Rightarrow 1 \\
$\left( {\because \cos 0^\circ = 1} \right)$ …… (9)
$
\left( {\vec b \cdot \vec c} \right) = \left| {\vec b} \right|\left| {\vec c} \right|\cos \dfrac{\pi }{3} \\\
\Rightarrow \dfrac{1}{2}\left| {\vec b} \right|\left| {\vec c} \right| \\\
\Rightarrow \dfrac{1}{2} \\\
$ $\left( {\because \cos \dfrac{\pi }{3} = \dfrac{1}{2}} \right)$ …… (10)
We have,\vec b \cdot \left( {\vec a \times \vec b} \right) + \vec b \cdot \left( {\vec b \times \vec c} \right) = p\left( {\vec b \cdot \vec a} \right) + q\left( {\vec b \cdot \vec b} \right) + r\left( {\vec b \cdot \vec c} \right)$$
From (6), (7), (8), (9), and (10)
\left( {\vec a \cdot \vec c} \right) = \left| {\vec a} \right|\left| {\vec c} \right|\cos \dfrac{\pi }{3} \\
\Rightarrow \dfrac{1}{2}\left| {\vec a} \right|\left| {\vec c} \right| \\
\Rightarrow \dfrac{1}{2} \\
$$ (∵cos3π=21) …… (13)
(c⋅b)=∣c∣bcos3π ⇒21∣c∣b ⇒21 (∵cos3π=21) …… (14)
\vec c \cdot \left( {\vec a \times \vec b} \right) + 0 = p\left( {\dfrac{1}{2}} \right) + q\left( {\dfrac{1}{2}} \right) + r\left( 1 \right) \\
\Rightarrow \vec c \cdot \left( {\vec a \times \vec b} \right) = \dfrac{{p + q + 2r}}{2} \\
\dfrac{{2p + q + r}}{2} = \dfrac{{p + q + 2r}}{2} \\
\Rightarrow 2p + q + r = p + q + 2r \\
\Rightarrow 2p + r = p + 2r \\
\Rightarrow 2p - p = 2r - r \\
\Rightarrow p + 2q + p = 0 \\
\Rightarrow 2p + 2q = 0 \\
\Rightarrow p = - q \\