Question
Mathematics Question on Vector Algebra
Let a=j^−k^ and c=i^−j^−k^. Then vector b satisfying a×b+c=0 and a⋅b=3 is
A
2i^−j^+2k^
B
i^−j^−2k^
C
i^+j^−2k^
D
−i^+j^−2k^
Answer
−i^+j^−2k^
Explanation
Solution
c=b×a ⇒b⋅c=0 ⇒(b1i^+b2j^+b3k^)⋅(i^−j^−k^)=0 b1−b2−b3=0 and a⋅b=3 ⇒b2−b3=3b1=b2+b3=3+2b3 b=(3+2b3)i^+(3+b3)j^+b3k^.