Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=j^k^\vec{a} = \hat{j} - \hat{k} and c=i^j^k^\vec{c} = \hat{i} - \hat{j} - \hat{k}. Then vector b\vec{b} satisfying a×b+c=0\vec{a} \times\vec{b}+\vec{c} = \vec{0} and ab=3\vec{a} \cdot\vec{b} = 3 is

A

2i^j^+2k^2 \hat{i} - \hat{j} +2 \hat{k}

B

i^j^2k^ \hat{i} - \hat{j} -2 \hat{k}

C

i^+j^2k^ \hat{i} + \hat{j} -2 \hat{k}

D

i^+j^2k^- \hat{i} + \hat{j} -2 \hat{k}

Answer

i^+j^2k^- \hat{i} + \hat{j} -2 \hat{k}

Explanation

Solution

c=b×a\vec{c} =\vec{b}\times\vec{a} bc=0\Rightarrow \vec{b}\cdot \vec{c} = 0 (b1i^+b2j^+b3k^)(i^j^k^)=0\Rightarrow \left(b_{1}\hat{i} + b_{2} \hat{j} +b_{3} \hat{k}\right)\cdot \left(\hat{i} - \hat{j} - \hat{k}\right) = 0 b1b2b3=0b_{1} - b_{2} - b_{3} = 0 and ab=3\vec{a}\cdot \vec{b} = 3 b2b3=3b1=b2+b3=3+2b3\Rightarrow b_{2} - b_{3} = 3 b_{1} = b_{2} + b_{3} = 3 + 2b_{3} b=(3+2b3)i^+(3+b3)j^+b3k^.\vec{b} = \left(3+2b_{3}\right)\hat{i} +\left(3+b_{3}\right)\hat{j} +b_{3}\hat{k}.