Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=i^+j^+2k^,b=b1i^+b2j^+2k^\vec{a} = \hat{i} + \hat{j} + \sqrt{2} \hat{k} , \vec{b} = b_1 \hat{i} + b_2 \hat{j} + \sqrt{2} \hat{k} and c=5i^+j^+2k^\vec{c} = 5 \hat{i} + \hat{j} + \sqrt{2} \hat{k} be three vectors such that the projection vector of b\vec{b} on a\vec{a} , If a+b\vec{a} + \vec{b} is perpendicular to c\vec{c}, then b| \vec{b}| is equal to :

A

22\sqrt{22}

B

44

C

32\sqrt{32}

D

66

Answer

66

Explanation

Solution

Projection of ba=a.ba=a\vec{b} \vec{a} = \frac{\vec{a} . \vec{b}}{\left|\vec{a}\right|} = \left|\vec{a}\right|
b1+b2=2\Rightarrow b_{1} + b_{2} = 2 ...(1)
and (a+b)c(a+b).c=0\left(\vec{a} + \vec{b}\right) \bot \vec{c} \Rightarrow \left(\vec{a} + \vec{b}\right) . \vec{c} =0
5b1+b2=10\Rightarrow 5b_{1} + b_{2} = -10 ....(2)
from (1) and (2)   b1=3\Rightarrow \; b_1 = -3 and b2=5b_2 = 5
then b=b12+b22+2=6\left|\vec{b}\right| = \sqrt{b_{1}^{2} + b^{2}_{2} + 2} = 6