Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=i^j^+k^,ab=1\vec{a}=-\hat{i}-\hat{j}+\hat{k}, \vec{a} \cdot \vec{b}=1 and a×b=i^j^\vec{a} \times \vec{b}=\hat{i}-\hat{j}. Then a6b\vec{a}-6 \vec{b} is equal to

A

3(i^j^k^)3(\hat{i}-\hat{j}-\hat{k})

B

3(i^j^+k^)3(\hat{i}-\hat{j}+\hat{k})

C

3(i^+j^k^)3(\hat{i}+\hat{j}-\hat{k})

D

3(i^+j^+k^)3(\hat{i}+\hat{j}+\hat{k})

Answer

3(i^+j^+k^)3(\hat{i}+\hat{j}+\hat{k})

Explanation

Solution

The correct answer is (D) : 3(i^+j^+k^)3(\hat{i}+\hat{j}+\hat{k})
a×b=(i^−j^​)
Taking cross product with a
⇒a×(a×b)=a×(i^−j^​)
⇒(a⋅b)a−(a⋅a)b=i^+j^​+2k^
⇒a−3b=i^+j^​+2k^
⇒2a−6b=2i^+2j^​+4k^
⇒a−6b=3i^+3j^​+3k^