Solveeit Logo

Question

Question: Let \[\vec a = \hat i + \hat j + \hat k\], \[\vec b = \hat i - \hat j + \hat k\] and \[\vec c = \hat...

Let a=i^+j^+k^\vec a = \hat i + \hat j + \hat k, b=i^j^+k^\vec b = \hat i - \hat j + \hat k and c=i^j^k^\vec c = \hat i - \hat j - \hat k be three vectors. A vector v\vec v of the form a+λb\vec a + \lambda \vec b for some scalar λ\lambda whose projection on c\vec c is 13\dfrac{1}{{\sqrt 3 }}, is given by
A. i^3j^+k^\hat i - 3\hat j + \hat k
B. 3i^3j^k^ - 3\hat i - 3\hat j - \hat k
C. 3i^j^+3k^3\hat i - \hat j + 3\hat k
D. i^+3j^3k^\hat i + 3\hat j - 3\hat k

Explanation

Solution

We should use the formula for the projection of one vector on the other vector. We can also use the formula for the dot product of the two vectors. Using the given values of the vectors a\vec a and b\vec b, solve the vector v\vec v. Then solve the formula for the projection of the vector v\vec v on the vector c\vec c and calculate the value of lambda. Substitute this value of lambda in the solved expression for.

Formulae used:
The projection of a vector a\vec a on the vector b\vec b is given by
X=abb\vec X = \dfrac{{\vec a \cdot \vec b}}{{\left| {\vec b} \right|}} …… (1)
The dot product of the two vectors a\vec a and b\vec b is given by
ab=axbx+ayby+azbz\vec a \cdot \vec b = {a_x}{b_x} + {a_y}{b_y} + {a_z}{b_z} …… (2)

Complete step by step answer:
We have given three vectors as
a=i^+j^+k^\vec a = \hat i + \hat j + \hat k
b=i^j^+k^\Rightarrow \vec b = \hat i - \hat j + \hat k
c=i^j^k^\Rightarrow \vec c = \hat i - \hat j - \hat k
We have also given that the vector v\vec v is given by
v=a+λb\vec v = \vec a + \lambda \vec b
Substitute i^+j^+k^\hat i + \hat j + \hat k for a\vec a and i^j^+k^\hat i - \hat j + \hat k for b\vec b in the above equation.
v=(i^+j^+k^)+λ(i^j^+k^)\vec v = \left( {\hat i + \hat j + \hat k} \right) + \lambda \left( {\hat i - \hat j + \hat k} \right)
v=(i^+j^+k^)+(λi^λj^+λk^)\Rightarrow \vec v = \left( {\hat i + \hat j + \hat k} \right) + \left( {\lambda \hat i - \lambda \hat j + \lambda \hat k} \right)
v=(1+λ)i^+(1λ)j^+(1+λ)k^\Rightarrow \vec v = \left( {1 + \lambda } \right)\hat i + \left( {1 - \lambda } \right)\hat j + \left( {1 + \lambda } \right)\hat k …… (3)

We have given that the projection of the vector v\vec v on the vector c\vec c is 13\dfrac{1}{{\sqrt 3 }}.
According to equation, we can write
vcc=13\dfrac{{\vec v \cdot \vec c}}{{\left| {\vec c} \right|}} = \dfrac{1}{{\sqrt 3 }} …… (4)
Let us first calculate the dot product of the vectors v\vec v and c\vec c.
vc=[(1+λ)i^+(1λ)j^+(1+λ)k^](i^j^k^)\vec v \cdot \vec c = \left[ {\left( {1 + \lambda } \right)\hat i + \left( {1 - \lambda } \right)\hat j + \left( {1 + \lambda } \right)\hat k} \right] \cdot \left( {\hat i - \hat j - \hat k} \right)
vc=(1+λ)(1λ)(1+λ)\Rightarrow \vec v \cdot \vec c = \left( {1 + \lambda } \right) - \left( {1 - \lambda } \right) - \left( {1 + \lambda } \right)
vc=λ1\Rightarrow \vec v \cdot \vec c = \lambda - 1

Let now calculate the magnitude of the vector c\vec c.
c=(1)2+(1)2+(1)2\left| {\vec c} \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}}
c=1+1+1\Rightarrow \left| {\vec c} \right| = \sqrt {1 + 1 + 1}
c=3\Rightarrow \left| {\vec c} \right| = \sqrt 3
Substitute λ1\lambda - 1 for vc\vec v \cdot \vec c and 3\sqrt 3 for c\left| {\vec c} \right| in equation (4).
λ13=13\dfrac{{\lambda - 1}}{{\sqrt 3 }} = \dfrac{1}{{\sqrt 3 }}
λ1=1\Rightarrow \lambda - 1 = 1
λ=2\Rightarrow \lambda = 2
Let now determine the vector v\vec v.Substitute 22 for λ\lambda in equation (5).
v=(1+2)i^+(12)j^+(1+2)k^\Rightarrow \vec v = \left( {1 + 2} \right)\hat i + \left( {1 - 2} \right)\hat j + \left( {1 + 2} \right)\hat k
v=3i^j^+3k^\therefore \vec v = 3\hat i - \hat j + 3\hat k
Therefore, the value of the required vector is 3i^j^+3k^3\hat i - \hat j + 3\hat k.

Hence, the correct option is C.

Note: The students should be careful while solving the expressions in the vector form because the mistake in only the sign of the components of the unit vectors in X, Y or Z direction can make the whole solution wrong and we will end with a wrong answer. Hence, the students should be careful while performing calculations.