Question
Mathematics Question on Vector Algebra
Let a=i^+j^+k^,b=−i^−8j^+2k^,andc=4i^+c2j^+c3k^be three vectors such that b×a=c×a.If the angle between the vector c and the vector 3i^+4j^+k^ is θ, then the greatest integer less than or equal to tan2θ is:
Calculate b×a:
b×a = i^j^k^ −1−821 111=−10i^+3j^+7k^
Since b×a=c×a, we have:
−10i^+3j^+7k^=i^j^k^ c1c2c3 111
Expanding the determinant, we get:
−10i^+3j^+7k^=(c2−c3)i^−(c1−c3)j^+(c1−c2)k^
Comparing the coefficients , we get:
c2−c3=−10
−c1+c3=−3
c1−c2=7
Solving these equations, we find:
c2=−3
c3=7
c1=4
So, c=4i^−3j^+7k^.
Let θ be the angle between the two vectors. We can use the dot product formula:
(3i^+4j^+k^)⋅c=∣c∣∣3i^+4j^+k^∣cosθ
Calculating the dot product and magnitudes:
(4,−3,7)⋅(3,4,1)=7426cosθ
Simplifying:
12−12+7=7426cosθ
7=7426cosθ
Solving for cosθ:
cosθ=74267
Using the identity sin2θ+cos2θ=1, we can find sinθ:
sinθ=1−cos2θ=1−192449=19241875
Now, we can calculate tan2θ:
tan2θ=cos2θsin2θ=491875
The greatest integer less than or equal to 491875 is 38.
Therefore, the correct answer is 38.
Solution
Calculate b×a:
b×a = i^j^k^ −1−821 111=−10i^+3j^+7k^
Since b×a=c×a, we have:
−10i^+3j^+7k^=i^j^k^ c1c2c3 111
Expanding the determinant, we get:
−10i^+3j^+7k^=(c2−c3)i^−(c1−c3)j^+(c1−c2)k^
Comparing the coefficients , we get:
c2−c3=−10
−c1+c3=−3
c1−c2=7
Solving these equations, we find:
c2=−3
c3=7
c1=4
So, c=4i^−3j^+7k^.
Let θ be the angle between the two vectors. We can use the dot product formula:
(3i^+4j^+k^)⋅c=∣c∣∣3i^+4j^+k^∣cosθ
Calculating the dot product and magnitudes:
(4,−3,7)⋅(3,4,1)=7426cosθ
Simplifying:
12−12+7=7426cosθ
7=7426cosθ
Solving for cosθ:
cosθ=74267
Using the identity sin2θ+cos2θ=1, we can find sinθ:
sinθ=1−cos2θ=1−192449=19241875
Now, we can calculate tan2θ:
tan2θ=cos2θsin2θ=491875
The greatest integer less than or equal to 491875 is 38.
Therefore, the correct answer is 38.