Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=i^+j^+k^,b=i^8j^+2k^,andc=4i^+c2j^+c3k^\vec{a} = \hat{i} + \hat{j} + \hat{k}, \quad \vec{b} = -\hat{i} - 8\hat{j} + 2\hat{k}, \quad \text{and} \quad \vec{c} = 4\hat{i} + c_2\hat{j} + c_3\hat{k} be three vectors such that b×a=c×a.\vec{b} \times \vec{a} = \vec{c} \times \vec{a}.If the angle between the vector c\vec{c} and the vector 3i^+4j^+k^3\hat{i} + 4\hat{j} + \hat{k} is θ\theta, then the greatest integer less than or equal to tan2θ\tan^2 \theta is:

Answer

Calculate b×a\vec{b} \times \vec{a}:

b×a\vec{b} \times \vec{a} = i^j^k^ 1821 111=10i^+3j^+7k^\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ -1 & -8 & 21 \ 1 & 1 & 1 \end{vmatrix} = -10\hat{i} + 3\hat{j} + 7\hat{k}

Since b×a=c×a,\vec{b} \times \vec{a} = \vec{c} \times \vec{a}, we have:

10i^+3j^+7k^=i^j^k^ c1c2c3 111-10\hat{i} + 3\hat{j} + 7\hat{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ c_1 & c_2 & c_3 \ 1 & 1 & 1 \end{vmatrix}

Expanding the determinant, we get:

10i^+3j^+7k^=(c2c3)i^(c1c3)j^+(c1c2)k^-10\hat{i} + 3\hat{j} + 7\hat{k} = (c_2 - c_3)\hat{i} - (c_1 - c_3)\hat{j} + (c_1 - c_2)\hat{k}

Comparing the coefficients , we get:

c2c3=10c_2 - c_3 = -10
c1+c3=3-c_1 + c_3 = -3
c1c2=7c_1 - c_2 = 7

Solving these equations, we find:

c2=3c_2 = -3
c3=7c_3 = 7
c1=4c_1 = 4

So, c=4i^3j^+7k^\vec{c} = 4\hat{i} - 3\hat{j} + 7\hat{k}.

Let θ\theta be the angle between the two vectors. We can use the dot product formula:

(3i^+4j^+k^)c=c3i^+4j^+k^cosθ(3\hat{i} + 4\hat{j} + \hat{k}) \cdot \vec{c} = |\vec{c}||3\hat{i} + 4\hat{j} + \hat{k}| \cos \theta

Calculating the dot product and magnitudes:

(4,3,7)(3,4,1)=7426cosθ(4,-3,7) \cdot (3,4,1) = \sqrt{74}\sqrt{26} \cos \theta

Simplifying:

1212+7=7426cosθ12 - 12 + 7 = \sqrt{74}\sqrt{26} \cos \theta

7=7426cosθ7 = \sqrt{74}\sqrt{26} \cos \theta

Solving for cosθ\cos \theta:

cosθ=77426\cos \theta = \frac{7}{\sqrt{74}\sqrt{26}}

Using the identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1, we can find sinθ\sin \theta:

sinθ=1cos2θ=1491924=18751924\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{49}{1924}} = \frac{\sqrt{1875}}{1924}

Now, we can calculate tan2θ\tan^2 \theta:

tan2θ=sin2θcos2θ=187549\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{1875}{49}

The greatest integer less than or equal to 187549\frac{1875}{49} is 38.

Therefore, the correct answer is 38.

Explanation

Solution

Calculate b×a\vec{b} \times \vec{a}:

b×a\vec{b} \times \vec{a} = i^j^k^ 1821 111=10i^+3j^+7k^\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ -1 & -8 & 21 \ 1 & 1 & 1 \end{vmatrix} = -10\hat{i} + 3\hat{j} + 7\hat{k}

Since b×a=c×a,\vec{b} \times \vec{a} = \vec{c} \times \vec{a}, we have:

10i^+3j^+7k^=i^j^k^ c1c2c3 111-10\hat{i} + 3\hat{j} + 7\hat{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ c_1 & c_2 & c_3 \ 1 & 1 & 1 \end{vmatrix}

Expanding the determinant, we get:

10i^+3j^+7k^=(c2c3)i^(c1c3)j^+(c1c2)k^-10\hat{i} + 3\hat{j} + 7\hat{k} = (c_2 - c_3)\hat{i} - (c_1 - c_3)\hat{j} + (c_1 - c_2)\hat{k}

Comparing the coefficients , we get:

c2c3=10c_2 - c_3 = -10
c1+c3=3-c_1 + c_3 = -3
c1c2=7c_1 - c_2 = 7

Solving these equations, we find:

c2=3c_2 = -3
c3=7c_3 = 7
c1=4c_1 = 4

So, c=4i^3j^+7k^\vec{c} = 4\hat{i} - 3\hat{j} + 7\hat{k}.

Let θ\theta be the angle between the two vectors. We can use the dot product formula:

(3i^+4j^+k^)c=c3i^+4j^+k^cosθ(3\hat{i} + 4\hat{j} + \hat{k}) \cdot \vec{c} = |\vec{c}||3\hat{i} + 4\hat{j} + \hat{k}| \cos \theta

Calculating the dot product and magnitudes:

(4,3,7)(3,4,1)=7426cosθ(4,-3,7) \cdot (3,4,1) = \sqrt{74}\sqrt{26} \cos \theta

Simplifying:

1212+7=7426cosθ12 - 12 + 7 = \sqrt{74}\sqrt{26} \cos \theta

7=7426cosθ7 = \sqrt{74}\sqrt{26} \cos \theta

Solving for cosθ\cos \theta:

cosθ=77426\cos \theta = \frac{7}{\sqrt{74}\sqrt{26}}

Using the identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1, we can find sinθ\sin \theta:

sinθ=1cos2θ=1491924=18751924\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{49}{1924}} = \frac{\sqrt{1875}}{1924}

Now, we can calculate tan2θ\tan^2 \theta:

tan2θ=sin2θcos2θ=187549\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{1875}{49}

The greatest integer less than or equal to 187549\frac{1875}{49} is 38.

Therefore, the correct answer is 38.