Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=i^+j^+k^,b=2i^+4j^5k^,andc=xi^+2j^+3k^,xR.\vec{a} = \hat{i} + \hat{j} + \hat{k}, \quad \vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}, \quad \text{and} \quad \vec{c} = x\hat{i} + 2\hat{j} + 3\hat{k}, \, x \in \mathbb{R}. If d\vec{d} is the unit vector in the direction of b+c\vec{b} + \vec{c} such that ad=1\vec{a} \cdot \vec{d} = 1, then (a×b)c(\vec{a} \times \vec{b}) \cdot \vec{c} is equal to:

A

9

B

6

C

3

D

11

Answer

11

Explanation

Solution

Step 1. d=λ(b+c)\vec{d} = \lambda (\vec{b} + \vec{c}), where λ\lambda is a scalar constant.
Given ad=1\vec{a} \cdot \vec{d} = 1:

Substituting:
ad=λ(a(b+c))\vec{a} \cdot \vec{d} = \lambda (\vec{a} \cdot (\vec{b} + \vec{c})).
1=λ(a(b+c))=λ(1+x+5)1 = \lambda (\vec{a} \cdot (\vec{b} + \vec{c})) = \lambda (1 + x + 5).
Simplify:
1=λ(x+6)(1).1 = \lambda (x + 6) \quad \dots \, (1).

Step 2. Since d=1|\vec{d}| = 1:
d=λ(b+c)=1|\vec{d}| = |\lambda (\vec{b} + \vec{c})| = 1.
Substituting λ=1x+6\lambda = \frac{1}{x+6}:
1x+6(b+c)=1\left| \frac{1}{x+6} (\vec{b} + \vec{c}) \right| = 1.
Simplify:
b+c2=(x+6)2|\vec{b} + \vec{c}|^2 = (x+6)^2.

Expand b+c=(2+x)i^+6j^2k^\vec{b} + \vec{c} = (2 + x)\hat{i} + 6\hat{j} - 2\hat{k}:
b+c2=(x+2)2+62+(2)2=x2+4x+4+36+4|\vec{b} + \vec{c}|^2 = (x+2)^2 + 6^2 + (-2)^2 = x^2 + 4x + 4 + 36 + 4.
Equate:
x2+4x+44=(x+6)2=x2+12x+36.x^2 + 4x + 44 = (x+6)^2 = x^2 + 12x + 36.
Simplify:
8x=8    x=1.8x = 8 \implies x = 1.

Step 3. Calculate (a×b)c(\vec{a} \times \vec{b}) \cdot \vec{c}:
Expand:

a×b=i^j^k^ 111 245.\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 1 & 1 & 1 \\\ 2 & 4 & -5 \end{vmatrix}.
Simplify:
a×b=i^(1514)j^(1512)+k^(1412).\vec{a} \times \vec{b} = \hat{i}(1 \cdot -5 - 1 \cdot 4) - \hat{j}(1 \cdot -5 - 1 \cdot 2) + \hat{k}(1 \cdot 4 - 1 \cdot 2).
a×b=9i^+3j^+2k^.\vec{a} \times \vec{b} = -9\hat{i} + 3\hat{j} + 2\hat{k}.

Now:
(a×b)c=(9)(1)+(3)(2)+(2)(3).(\vec{a} \times \vec{b}) \cdot \vec{c} = (-9)(1) + (3)(2) + (2)(3).
Simplify:
(a×b)c=209=11.(\vec{a} \times \vec{b}) \cdot \vec{c} = 20 - 9 = 11.

Option (4) is correct.