Question
Mathematics Question on Vector Algebra
Let a=i^+j^+k^,b=2i^+4j^−5k^,andc=xi^+2j^+3k^,x∈R. If d is the unit vector in the direction of b+c such that a⋅d=1, then (a×b)⋅c is equal to:
A
9
B
6
C
3
D
11
Answer
11
Explanation
Solution
Step 1. d=λ(b+c), where λ is a scalar constant.
Given a⋅d=1:
Substituting:
a⋅d=λ(a⋅(b+c)).
1=λ(a⋅(b+c))=λ(1+x+5).
Simplify:
1=λ(x+6)…(1).
Step 2. Since ∣d∣=1:
∣d∣=∣λ(b+c)∣=1.
Substituting λ=x+61:
x+61(b+c)=1.
Simplify:
∣b+c∣2=(x+6)2.
Expand b+c=(2+x)i^+6j^−2k^:
∣b+c∣2=(x+2)2+62+(−2)2=x2+4x+4+36+4.
Equate:
x2+4x+44=(x+6)2=x2+12x+36.
Simplify:
8x=8⟹x=1.
Step 3. Calculate (a×b)⋅c:
Expand:
a×b=i^ 1 2j^14k^1−5.
Simplify:
a×b=i^(1⋅−5−1⋅4)−j^(1⋅−5−1⋅2)+k^(1⋅4−1⋅2).
a×b=−9i^+3j^+2k^.
Now:
(a×b)⋅c=(−9)(1)+(3)(2)+(2)(3).
Simplify:
(a×b)⋅c=20−9=11.
Option (4) is correct.