Solveeit Logo

Question

Mathematics Question on Product of Two Vectors

Let a=i^+j^k^\vec a=\hat i+\hat j−\hat k and c=2i^3j^+2k^\vec c=2\hat i−3\hat j+2\hat k. Then the number of vectors b\vec b such that b×c=a\vec b×\vec c=\vec a and b1,2,,10|\vec b|∈{1,2,…,10} is :

A

0

B

1

C

2

D

3

Answer

0

Explanation

Solution

a=i^+j^k^\vec a=\hat i+\hat j−\hat k
c=2i^3j^+2k^\vec c=2\hat i−3\hat j+2\hat k
Then, b×c=a\vec b×\vec c=\vec a
c.(b×c)=c.a⇒ \vec c.(\vec b \times \vec c) = \vec c. \vec a
c.a=0\vec c. \vec a = 0
(i^+j^k^)(2i^3j^+2k^)=0⇒(\hat i+\hat j−\hat k)(2\hat i−3\hat j+2\hat k) = 0
232=0⇒ 2 – 3 – 2 = 0
3=0–3 = 0 (possibility null)
⇒ No value of b\vec b is possible.

Therefore, the correct option is (A): 00