Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a\vec a=i^+j^+2k^\hat i+\hat j+2\hat k, b\vec b=3i^\hat i-2j^\hat j+7k^\hat k, and c\vec c=2i^\hat i-j^\hat j+4k^\hat k.Find a vector which is perpendicular to both a\vec aand b\vec b,and c\vec c.d\vec d=15.

Answer

Let d→=d1i^\hat i+d2j^\hat j+d3k^\hat k.
Since,d\vec d is perpendicular to both a\vec a and b\vec b, we have:
d.a=0\vec d.\vec a=0
⇒d1+4d2+7d3=0...(i)
And,
d.b\vec d.\vec b=0
⇒3d1-2d2+7d3=0...(ii)
Also,it is given that:
c.d\vec c.\vec d=15
⇒2d1-d2+4d3=0=15...(iii)
On solving (i),(ii),and (iii), we get:
d1=1603\frac{160}{3},d2=53-\frac{5}{3},and d3=703-\frac{70}{3}
d\vec d=1603i^53j^703k^\frac{160}{3} \hat i -\frac{5}{3}\hat j-\frac{70}{3}\hat k=13\frac{1}{3}(160i^\hat i-5j^\hat j-70k^\hat k)
Hence, the required vector is 13\frac{1}{3}(160i^\hat i-5j^\hat j-70k^\hat k).