Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=i^+αj^+βk^\vec{a} = \hat{i} + \alpha \hat{j} + \beta \hat{k}, α,βR\alpha, \beta \in \mathbb{R}. Let a vector b\vec{b} be such that the angle between a\vec{a} and b\vec{b} is π4\frac{\pi}{4} and b2=6|\vec{b}|^2 = 6,
If a×b=32\vec{a} \times\vec{b} = 3\sqrt{2}, then the value of (α2+β2)a×b2\left( \alpha^2 + \beta^2 \right) | \vec{a} \times \vec{b} |^2 is equal to

A

90

B

75

C

95

D

85

Answer

90

Explanation

Solution

Using a×b=abcosθ\vec{a} \times \vec{b} = |\vec{a}||\vec{b}| \cos \theta:

32=a×6×22a=1.3\sqrt{2} = |\vec{a}| \times 6 \times \frac{\sqrt{2}}{2} \Rightarrow |\vec{a}| = 1.

Since a2=1|\vec{a}|^2 = 1, we have 1+α2+β2=1α2+β2=5.1 + \alpha^2 + \beta^2 = 1 \Rightarrow \alpha^2 + \beta^2 = 5.

For a×b=absinθ|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}| \sin \theta:

a×b=1×6×22=32.|\vec{a} \times \vec{b}| = 1 \times 6 \times \frac{\sqrt{2}}{2} = 3\sqrt{2}.

Thus, (α2+β2)a×b2=5×18=90.(\alpha^2 + \beta^2)|\vec{a} \times \vec{b}|^2 = 5 \times 18 = 90.